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Analysis of superoscillatory wave functions
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Surprisingly, differentiable functions are able to oscillate arbitrarily faster than their
highest Fourier component would suggest. The phenomenon is salbedoscilla-

tion. Recently, a practical method for calculating superoscillatory functions was
presented and it was shown that superoscillatory quantum mechanical wave func-
tions should exhibit a number of counter-intuitive physical effects. Following up on
this work, we here present more general methods which allow the calculation of
superoscillatory wave functions with custom-designed physical properties. We give
concrete examples and we prove results about the limits to superoscillatory behav-
ior. We also give a simple and intuitive new explanation for the exponential com-
putational cost of superoscillations. ©2005 American Institute of
Physics.[DOI: 10.1063/1.1825076

I. INTRODUCTION

It used to be believed that a function could not oscillate much faster than its highest Fourier
component. Aharonov, Berry and others showed that this is not the case by giving explicit counter-
examples which they named superoscillatory functions, see, e.g., Refs. 1-4. In fact, there are
functions which on arbitrarily long stretches oscillate arbitrarily faster than their highest frequency
Fourier component, see Ref. 5. In other words, the presence of localized fast oscillations in a
continuous function need not be visible at all in the function’s global Fourier transform. In a
function’s global Fourier transform, contributions from regions of fast oscillations can be can-
celled perfectly by contributions from regions where the wave function is oscillating slowly.

In the context of quantum theory, wave functions that superoscillate are able to cause a
number of counter-intuitive effects. Some of these may be of conceptual significance in quantum
gravity, see Refs. 6 and 7. But effects of superoscillations also enter in the low energy realm of
nonrelativistic quantum mechanics. Among such potentially observable low-energy effects is the
counter-intuitive phenomenon that particles with superoscillatory wave functions can be made to
accelerate when passing through a neutral slit.

Consider a particle which possesses a bounded momentum range, i.e., its momentum wave
function vanishes for momenta that are larger than spme As will be explained below, we can
arrange that in a certain region in space the particle’s wave function superoscillates, i.e., that it
oscillates with a much shorter wavelength thep,,,,. Now let the wave function be incident onto
a screen with a single slit in such a way that it is the superoscillatory part of the wave function
which passes through the slit. Upon emerging from the slit the particle’s wave function will then
oscillate rapidly where the slit is and will be zero elsewhere. The very short wavelengths of the
emerging wave function will be visible in its global Fourier transform. This is because the con-
tributions to the global Fourier transform which come from the fast oscillations in the slit interval
are no longer cancelled by contributions from outside the slit interval. Therefore, the particle will
have gained momentum merely by passing the slit. The momentum gain is determined by the
shortness of the wavelength of the superoscillations and, as explained below, there is no limit, in
principle, to how short that wavelength can be made.

In order to facilitate the design of experiments that can realize the effects of superoscillatory
wave functions it is desirable to possess methods for explicitly calculating superoscillatory wave
functions with predetermined properties. In particular, one may wish to calculate those low-
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FIG. 1. Example of a superoscillation created by requiring the wave function to pass through certain points. A cosine
function of the minimum wavelength/maximum frequency is shown for comparison.

momentum but superoscillatory wave functions which after passing through the slit yield wave
functions with a predetermined arbitrarily large momentum and a momentum uncertainty that is as
small as is allowed by the uncertainty relation. Our aim here is to develop methods that allow us
to solve this and other problems.

Our starting point will be the method for calculating superoscillatory wave functions which
was developed in Ref. 6 using results of Refs. 8 and 9. This method allows the construction of
wave functions of arbitrarily low fixed frequency content that pass through an arbitrary finite
number of prespecified points. Figures 1 and 2 show an example.

Our aim is to develop more general methods for designing superoscillatory functions with
generic prespecified properties. We will also ask what the in-principle limits are for the construc-
tion of superoscillatory wave functions.

Il. SELF-ACCELERATION THROUGH SINGLE SLIT

In order to motivate and formalize the mathematical problem that we will address, let us
consider the illustrative example of particles that self-accelerate when passing through a slit.

A. Notation

The Fourier transform of a wave functiohwill be denoted by?p,

o0

Wp) PP dix. (1)

- V2mh J —

We will often consider particles whose momentum is bounded by a finite y&glue
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FIG. 2. A zoomed-out Fig. 1. Notice that, as is typical, the amplitudes in the superoscillating region are far @raedler
even unnoticablethan those on either side.

1 Pmax _ .
X) = —— Pt gy . 2
() N _pmax¢<p) 2

Borrowing terminology from communication engineering and sampling theory, see, e.g., Ref. 10,
we will speak of such a functiogi(x) as having bandwidtp,,,, as being band limited, or in this
case as being momentum limited. It will be convenient to define the sinc function as

, SIN) ¢ w + 0,
sindx) =1 X (3
1 ifx=0.

Notice that definitions of the sinc function elsewhere may include a factar. of

B. Gedanken experiment

Let us consider a particle in two dimensions which travels alongxihdirection towards a
screen which is parallel to the, direction. Assume the particle passes through a slit with
Xo,-coordinate interva[-L/2,L/2] in the screen. Henceforth, we will assume that the incident
particle’s momentum parallel to the scre@s, has a finite bounqbzmax,

:k(pla p21t) =0 If p2 & [_ pzmax’ pzmax] ’ (4)

Our aim is to compare the particle’s momentum parallel to the screen before and after the particle
passes the slit. For simplicity, we will suppress the varialilep;, andt. From now on.x, is
renamed andp, is renamed. We denote the incident wave function just before passing through
the slit by #(x) and we denote the wave function which emerges from the sli?by. The state

|W) is of course given by projection and renormalization,
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Pd)
W)= ==, (5)
1Pl
where Pg projects onto the slit,
L
P, if X<,
Psif(x) = 2 (6)
0, otherwise.
Similarly, we defineP, as the projector onto a finite momentum interval,
~ W), if [ < Prax
pop) o= | VP TIPI= Pmax )

0, otherwise.

While the incident wave function is momentum limité®}| /) =|), the emerging wave function is
position limited, obeyingP¥)=|¥).

As was shown in Refs. 5 and 6, it is always possible to find incident wave funcfiogs
which obey the momentum boumg,,, and which at any finite number of points in the slit interval
take arbitrarily prescribed amplitudése will reproduce this result as a special case bglave
will be able to arrange, therefore, that the wave functigr) takes, for example, the alternating
values(-1)" at an arbitrarily large number of points in the slit interval—which enforces sup-
eroscillations. Thesé(x) will be differentiable and square integrable. Then, if the particle passes
the slit, only the superoscillating stretch of the wave function emerges from the slit. Renormalized,

we denote it¥(x). The Fourier transformif(p) of W(x) will show the presence of small wave-
lengths, implying that the particle emerges from the slit accelerated to a momentum lpgyend

C. Template functions

As already mentioned, the results of Refs. 5 and 6 showed that functions of fixed bandwidth
can always be found which at arbitrarily but finitely many points possess predetermined ampli-
tudes. Therefore, the width or narrowness of the slit does not limit how short the wavelength of the
superoscillations can be. As a consequence, there is no slit-dependent limit to the amount of
self-acceleration that can be achieved in this way.

This leads us to ask more generally whether the process of self-acceleration can be designed
virtually at will: is it always possible to construct incident wave functi@fg) of fixed momen-
tum limit p,.x Which on the slit interval-L/2,L/2] match any arbitrarily chosen template
function, say®(x)? This is of interest because, if true, we can optimize the predictability of the
self-acceleration. To this end, we would choose the template fun®ighto be a wave function
with a fixed arbitrarily large momentum expectatiprwhose momentum uncertaintyp is as
small as allowed by the uncertainty relation. If the incident superoscillatory wave function
matched this template function in the slit intergap to normalizatioly then the wave function
would merge from the slit with the chosen momentum expectatiand lowest possible momen-
tum uncertainty,Ap, for the given width of the slit. For later use, let us calculate these ideal
template functionsb(x).

1. Ideal template functions

Our aim is to find ideal template functiod®x) defined on the slit intervdl-L/2,L/2] which
minimize the momentum uncertaintqp, possess a predetermined momentum expectation
(P|p|®P)=p and are normalizedd |®)=1. To this end, we need to solve the constrained varia-
tional problem with the functional
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L =(P[p*|®) + 1 P|p| D) + ux{ D|D), (8

whereu, and u, are Lagrange multipliers. Note that minimizidg is equivalent to minimizing
(®|p?|®) because is fixed. Hence the Euler—Lagrange equation in position space is

— 12D"(X) = if P (x) + pp®(x) = 0. 9

Since any wave function that emerges from the slit vanishes at the slit boundaries, we require
®(x£L/2)=0. The solution, which is unique up to a phase, is

d(x) = \/g cos( 7fx) gxplt (10)

Its uncertainties areAx=L((7%-6)/127%)Y2~0.18. and Ap==#/L. We have AxAp~=~0.57
which is a little larger than what the uncertainty relation allows because our problem requires
template functionsb(x) to be zero outside the slit interval.

2. Superoscillatory wave functions cannot match arbitrary templates

Let us now come back to the question whether it is generally possible to find an incident wave
function ¥(x) which obeys a momentum boungl,., while in the interval[-L/2,L/2] agreeing
completely with an arbitrarily chosen template functidrx), such as the functiom(x) just
calculated in Sec. Il C 1. Strictly speaking, the answer is no.

As is easily verified, all band-limited functions are entire functions. In particular, any
momentum-limited incident wave functiof(x) is entire and it is, therefore, everywhere differen-
tiable. Now choose, for example, a template functib(x) which is not differentiable at some
point in the interval[-L/2,L/2]. Thus, there cannot exist a momentum-limited incident wave
function which obeysj(x)=®(x) for all xe [-L/2,L/2]. Nevertheless, a slightly weaker propo-
sition does hold.

3. Convergence towards arbitrary template functions

Let ®(x) be a continuous and square integrable template function. Let us ask whether one can
always find a sequence of wave functiofg(x) of fixed momentum boung,,,, which behave
with more and more precision liké(x) over the region of the slit. To be precise, is it possible to
find a sequence of momentum-limited incident walag whose emerging wave functiofd)
have asymptotically vanishinig?-distance||Wy)—|®)| to an arbitrary template staj®)? This is
indeed the case.

To see this, consider in the quantum mechanical Hilbert space of $faréth scalar product

(&l&) = f L0 &, (1D
and the following three subspaces:
Hg:= PSH, (12
Hy = PyH, (13
Hep:= PPpH. (14

That is,H is the subspace of states with position limitation to the &lj},is the subspace of states
with fixed momentum limitatiom,,., andHs;, is the subspace of states obtained after passing the
momentum-limited wave functions through the slit.

Proposition 1:Hgy, is dense irH,, i.e.,
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O|®) € Hse > 00[W) e Hepl|V) - [P)] <e. (15)
Proof: If |®)=0, then takgW¥)=0. For|®)# 0 we must show that

OP) € H\{O}(P|®)=00|¥) € Hgp (16

Since|®) is position limited, this is equivalent to showing that

DN®) € H\{O}:(¢|P) =00 [¢h) € Hy,. a7

Assume, for a contradiction, that
O®) e H\O}:(4P) =00 [¢h) € Hy,. (18

This implies that®) 1 H,,. Thus,&)(p)zo ON[~Prax: Pmaxl- BUL, since&)(p) is entire and zero over

a finite interval,®(p)=0 everywhere o, i.e.,|®)=0. This is a contradiction. Therefor(, is
dense inH.. O

While this result proves the existence of band-limited functions that are arbitrarily close in the
L2 topology to any template function within the window of the slit, the result does not provide
explicit methods for constructing such band-limited functions.

Ill. CONSTRUCTIVE METHOD FOR GENERAL LINEAR CONSTRAINTS

We now focus on practical methods for calculating superoscillatory wave functions that ap-
proximate template functions in the slit interval. We begin with the method for constructing
superoscillatory functions presented in Ref. 6. This method allows one to specify that the to-be-
found superoscillatory function takes arbitrarily chosen amplitualest any finite numbeN of
arbitrarily chosen points,

P(x) =g, fork=1,... N. (19)

The superscript(u) is to indicate that the fuction will generally be unnormalized. Equatic9)
specifies a function which possesses a superoscillating stretch. For example, we may chgose the
spaced closer thah/p,., and the amplitudes alternating, e.g,=(-1)X. The normalized wave
function y(x) = ' (x)/||¢/Y|| then possesses superoscillations that are as rapid as thg$e it
with a renormalized amplitude. Thus, in order to obtain &) with the most pronounced
superoscillations, i.e., the superoscillations of largest possible amplitude, one needs to find that
function #!Y(x) whoseL? norm||¢/)|| is minimal. The method of Ref. 6 solves this optimization
problem.

We now generalize the method of Ref. 6. To this end, we begin by rewriting the requirement
that /¥(x) be band limited byp,.x and pass through the poin{é,allr.,, namely(19), in
momentum space as

1 fpmax . _
— eOMPy W (p)dp = ay. 20
i), P (p)dp =2 (20)

Our aim is to obtain a method for constructing superoscillatory wave functions which not only
pass through predetermined points but which obey also more generic types of constraints. To this

end, let us allow constraints on the functi%’) which are of the general linear form,

1 Pmax

V2mh

8= PP (pdp Oke{l,... N} (21)

~Pmax

Here, theéy, are arbitrary linearly independent differentiable functions. By choosing these, we will
be able to prescribe for the superoscillatory wave function not only amplitudes but also arbitrary
derivatives, integrals and any other linear constraint. In order to obtain the most pronounced
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superoscillations in the normalized functi(;(ﬂ we minimize the norm opr(”), subject to the
constraints in Eq(21). The to-be-optimized functional with Lagrange multiplieisreads

Pmax L~ N )\* Pmax e~
L= J PP pdp- 2 == | X@y(pdp+c.c., (22)
~Pmax k=1 \27h ~Pmax

leading to the Euler—Lagrange equation,

N
~ 1

W(p) = —= >, Awi(D). 23
Y (p) 5 mil X(p) (23

Recall that:b(“) is zero outside the interv@rpmaxw Pmax BY assumption. Thus, usin@3) in (21),

N
Q= E Tkr7\r1 (24)
r=1
where the Hermitian matriX is defined by
1 (Pmax
T=5— J _pmaxxk(p)xr(p)dp- (25

As we will show below,T is invertible. Thus)::T‘lé, i.e.,

ED I rr- (26)

Thus, using the Fourier transform of the constraint function

pmax

1 ~ )
xi(X) = s f (PP dp (27)
Y

Pmax

we obtain from(23) that the desired superoscillatofstill unnormalizedl incident wave function
in position space is given by

N
1
u) - .
PU(x) N glxkxk(x) (28)

Existence of the solutiorit remains to be shown thatis indeed invertible. To see this, lgt
be an arbitrary vector. Then

N 1 Pmax N 1 Pmax
a'Ti= E ukarur = ﬁf_pm E uk}k(p)}r(p)ur dp= ﬁf

k,r=1 ax Kr=1 ~Pmax

N 2
> Unkm(P) | dp.

m=1

Since théy, are linearly independent the integrand is positive. Therefbie positive definite and
hence invertible.

IV. THE COST OF SUPEROSCILLATIONS

As was shown in Ref. 6, one cost of superoscillations is that requiring more or faster sup-
eroscillations makes the matrik increasingly difficult to invert numerically, as its smallest and
largest eigenvalues differ by growing orders of magnitude. The condition humber was found to
increase exponentially with the number of superoscillations.

We here only remark that, in the sense of computational complexity, this makes it computa-
tionally hard to calculate superoscillations. Interestingly, this also means that any quantum effect
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that naturally produces functions with arbitrarily large superoscillatory stretches constitutes an
example of an exponential speed-up in the sense of quantum computing. Physical occurrences of
superoscillations, e.g., in the context of evanescent waves, have been discussed, e.g., in Refs. 3
and 4. Also, for examplérather speculatively the possibility of an unbounded production of
superoscillations has been discussed in the context of the trans-Planckian problem of black holes
in Refs. 11 and 12.

Here, we will focus on a more immediate cost of superoscillations, namely the need for an
increasingly large dynamical range, a function’s superoscillations are generally of low amplitude
when compared to the function’s amplitudes to the left and right of its superoscillatory stretch. To
be precise, it was shown in Ref. 6 that ttlenorm of the function increases polynomially with the
frequency of the prescribed superoscillations, for fixed prescribed superoscillating amplitudes. In
particular, it was also shown that the norm increases exponentially with the number of imposed
superoscillations. Correspondingly, in normalized wave functions the amplitudes of superoscilla-
tions decrease exponentially with the number of superoscillati@fscourse, if the superoscil-
lating stretch of the particle’'s wave function happens to pass through the slit then its wave
function, however small, is renormalized whereby the superoscillating amplitudes will be restored
to the amplitudes of the template functipn.

By making use of the special properties of prolate functions these scaling results were derived
for the type of superoscillations produced with the method of Ref. 6. In the following two sections
we will show more directly the underlying reason for this exponential behavior of the norm of
superoscillatory functions. Our argument will apply more generally to all superoscillatory func-
tions that arise from linear constraints.

A. Derivatives and norms

If a function ¢/“)(x) is band limited, one would expect that there is a bound on its derivatives.
Applying the Cauchy—Schwarz inequality, consider

(u) ipx/h
WiU w(p< )ep dp

= ( fp ww(p)( ) 2dp)( f_pmaxldp)

h Pmax Pmax
1
Th

Prmax 2n2 JO2
: Prmasd 1%

2

=

=
Thus,

dn u) ( pmax) " pmax (u)

Vil (x)‘ <\ Vo el (29

Thus arbitrarily large derivatives, as they can be produced with superoscillations, are consistent
with a finite fixed bandwidth but we see that the cost must be an increase in the norm of the
function ||“)]].

B. The norm of superoscillating functions

A precise expression for the norfig/Y|| of the superoscillatory functions obtained by our
method can be derived,

W2 = —_
wors o

Hence,

2 Pmax N

dp= f > NGPX(PA dp=XTN. (30)
2mh Pmax Kir=1
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|pW2=\"a=a\ =& 1. (31)

Note thatT™! is a positive self-adjoint matrix. We now see that for given constraint functigns,

the most norm-expensive superoscillatory functions are obtained if we choose the constraint pa-
rametersa, such thatd is the eigenvector of~* with largest eigenvalue. We will arrive at those
extreme superoscillations also from independent momentum space considerations in Sec. VI.

C. Adding successive constraints

Consider a set of constraints, described by a set of funcfiaiis ; and parameterg i, and
suppose that, using our method, the momentum-limited wave function which obeys all those
constraints and is of minimum norm has been calculated. Let us ask how the norm of the solution
to this problem changes if we add one additional constraint

Pmax

(P Ap)dp, (32

~Pmax

aN+l = —’,_
\27h

where yn.+1 anday,q are chosen arbitrarily. Let us denote the solution to the initial problei of
constraints by and let us define,

1 Pmax -
cim | T dp. 33
\,thf_pmaxXN 1(p)n(p)dp (33

Clearly, if we choose theéN+ 1)st constraint withay,,:=¢ thenTpN is also the function of mini-

mum norm obeying théN+1 constraints, i.e.i.1 =¥, just as if we had not added a new
constraint, or as if we had set tlid+1)st Lagrange multiplier to zeroy,,=0.
Now, let us allow the constraint parametgy,, to vary away fromc. Correspondingly, our

method will yield a family of functions:bNﬂ ( #7//,\,), parametrized by, 1. We observe frong31)
(letting the sum run tdN+1) that the norm squared of these functions is a quadfatid of course
positive) polynomial ina,, Note that its minimum occurs if we choose thg,, value,

1 _
> T(l\l|+1),ra1'v (34

C=aNnm =~
T(N+1),(N+1) r#(N+1)

because theES#NJ,l)T(‘,\}ﬂ)lsas:O. Using(24) we see that this choice @f,4 leads to the vanish-
ing of the Lagrange multipliexy,,=0, which is what we expected for if we add a new constraint

that is already satisfieds will not change.

Crucially, we now see that as we tuag,; away fromc, say in order to enforce an additional
superoscillation twist, the squared norm of the solution increases quadratically. Therefore, if we
keep adding new generic constraints, say in order to implement more and more superoscillations,
this will generally increase the norm of the solution by a factor in each step. Thus, the norm of the
solution will generically scale exponentially with an increase in the number of constMints

This finding widely generalizes the result of Ref. 6 which applied only to constraints of the
special form(19) and among them only to those with equidistant spacings okthe

V. APPLICATIONS TO AN IDEAL TEMPLATE FUNCTION

In Sec. Il C 1, we asked how the wave functidix) that emerges from the slit would have to
look in order to describe a particle with an arbitrarily high predetermined momentum expectation
value p and a momentum uncertaintyp which is as small as is allowed by the uncertainty
relation. This ideal template function was given(irD).

Let us consider the concrete example; 1, L=2, p,=1, andp=2. If the emerging wave
function ¥ can be arranged to be equal or close to this template fundticthis clearly exhibits
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FIG. 3. The ideal template’s momentum wave functi&r{p)|2. Notice that it is centered well outside the original
bandwidthp,,,=1.

the phenomenon of self-acceleration because the emerging momentum wave function would be
peaked ap=p=2, i.e., well outside the original bandwidth pf,..=1, see Fig. 3.

We had shown that exact matchingf(x)=®(x), is generally not possible, but we also saw
that there always exists a sequence of incident wagso that for the emerging wavek, we
haveWy— ® in the L? topology, which is here the only physically relevant topology. Thus, there
are superoscillatory incident wave functions which achieve the prescribed self-acceleration prop-
erties to arbitrary precision. For illustration, let us explicitly calculate such superoscillatory inci-
dent wave functions.

A. Method of matching amplitudes

Let us begin by applying the method presented in Ref. 6, which is a special case of our
method of general linear constraints. In this special case, we require the momentum-limited inci-
dent wavey!¥(x) to exactly match the amplitude of the ideal template function at several pgints
of the slit interval[-L/2,L/2]. The constraints in the variational problem are then given by the
linearly independent constraint functiofiyg(p) := €™¥* and constraint parametegg:= ®(x,).

Thus,

Tr = ﬁ _::a:x gP) gp = %ﬁx sin p';;ax[xk - x,]) (35)
which leads to the solution
1 N
POx) = \2=m21 k() (36)

wherex=T"1a and where
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0.4

0.2

FIG. 4. Im(y/¥(x)) over the slit in the example of Sec. V A. The wavelength is about,,5

1 Pmax 2 )
X0= =] PN dp=pray[ SIn0< —p;‘zax[x— xk]>- (37
N2ah J -p

max

We observe that the wave functigf’(x) is a linear combination of sinc functions centered at the

X, and we note that/(x) is square integrable, since the sinc functions are. In genéra,ill
conditioned, i.e., care must be taken to invert it with enough numerical precision so as to satisfy
the constraints with sufficient accuracy.

We used routines in Maple which calculate T4 by solvingT)t:é using Gaussian elimi-
nation. Concretely, we requiregf”’(x) to match the ideal template functich(x) with p=2 at
N=9 equidistantly spaced poirmtg from slit boundary to slit boundary. For example, Fig. 4 shows
the imaginary part of the superoscillatory functigh’ over the slit interval. Figure 5 shows a
zoomed-out view of 4" (x)|?, displaying the typical big amplitudes to the left and right of the
superoscillating stretch.

The momentum expectation value for the ideal template function that we chpse2js, ..
Numerically, we found that the strictly momentum-limited incident wave funciitx) for N=9
yields an emerging wave functio(x) whose momentum expectation value@s= 1.9y
Clearly, the momentum of particles which pass through the slit essentially doubles by self-
acceleration, as intended. The momentum uncertainty of the emerging wave functigm is
~1.4Dmax

Recall that for this slit size the momentum uncertainty could be significantly smaller, namely
Ap=1/2, as isprecisely realized in the ideal template function. By increadingve can achieve
that the incident wave functio”(x) better matches the template, leading to a lowering pf
towards that limiting value. For example, fak=15 we find p=~1.999 4P« and Ap
~0.500 2%, For significantly largemN the exponential computational expense sets in. Our
generalized method for linear constraints allows us to use other linear constraints which we found
to be numerically more efficient in the sense of allowing us to reach larger vallés\Wé will
discuss the use of these alternative constraints in Sec. V B.
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FIG. 5. [¢/¥(x)|? over the slit and surrounding regions in the example in Sec. V A.

Figure 6 shows the accuracy with which tif&(x) obtained by matchingl=9 amplitudes of
HY(x) to those ofd(x) agrees with the ideal template functidr(x) for arbitrary x in the slit
interval. The behavior is similar for all values bf (that we tested For generalN, there areN
-1 peaks and the height of the highest peak decreased\Nwith

B. Method of matching derivatives

In order to illustrate the generality of our new method of Sec. Ill, let us now construct
superoscillatory wave functions by requiring that the wave function matches value and derivatives
of the template at one point, instead of requiring, as we did in Sec. V A, that the wave function
matches only the value of the template function at several points.

Concretely, let us require that the value and fi\st1 derivatives of the to-be-found wave
function /¥ agree ak=0 with those of the ideal template functidnof above. In the equation for
general linear constraint®1), we obtain a constraint on tH&-1)st derivative by choosing for
the constraint function

_ k-1
W) = (— g) . (38

Matching the derivatives to those of the template is to choose the constraint parametegg to be
= ®*1(0), whered®D denotes thék- 1)st derivative. Since thg, are linearly independent,

1 Pmax (ip)k_:L( ip)r_l
Ty==— = [-=
kr 20t f—pmax A A dp (39)

is invertible, yielding the solution
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FIG. 6. |[W(x)-®(x)|? over the slit in the example in Sec. V A.

N
1
W(x) = —=—=> Nex(X), 40
P (x) V,Mglkxku (40)
where
1 pmax( ip)k_l_
X) = —— -—| & dp. 41
Xk(X) ot . 7 p (41

Note that#(x) is a linear combination of derivatives of sinc functions, each of which is band
limited. In this caseT is simpler to invert and we can go, for example, to the dds@3 before

the exponential computational expense sets in. In this case, forNatige coefficients\, quickly

grow large and hence the subtle cancellations in the Fourier transform require fast increasing
numerical precision.

We considered the example where the value of the function and its first 22 derivatives is
required to match those of the ideal template functiox=a0. We found numerically that the
momentum-limited superoscillating function, after passing through the slit, then exhibits a mo-
mentum expectation value pf~2.000,,,, and momentum uncertaintyp~ 0.500 49. Thus we
reach the targeted momentum-doubling self-acceleration, with a momentum uncertainty which is
only marginally above the uncertainty relation lindip=1/2 for this slit size. Figure 7 displays
the accuracyW(x)-d(x)[2.

VI. AMOMENTUM SPACE METHOD

In position space, superoscillatory wave functioi) generally possess a characteristic
shape: rapid but small oscillations in the superoscillating stretch and a few large long-wavelength
amplitudes shortly before and after. Do these states also possess a characteristic shape in momen-
tum space?
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FIG. 7. |¥(x)-®(x)|? over the slit in the example in Sec. V B.

Let us consider, for example, the superoscillations obtained by prescribing oscillating ampli-
tude valuesy at close-by pointx,. We found that, in momentum space, such a state is a linear
combination of plane waves eipx,p),

N

1 .
~ =S\ &P if |p| < P
o) = | o e 1Pl Pma (42)

0, if [p|> Pmax

It appears, see, e.g., Fig. 8, that thee) generally possess small amplitudes in most of the
momentum interval—pmax Pmax, €Xcept for near the boundariep#,. We calculated the Fourier
transforms of a number of superoscillatory wave functions and observed this as a general feature.

Thus, in momentum space, these superoscillations appear to be a linear combination of plane
waves whose interference is close to being as strong as it can be, with the effect that the resulting
function is of minimized norm.

If this assumption is correct, we should be able to derive superoscillatory wave functions by
calculating that linear combination of plane waves in momentum space whose norm is minimal.
To this end, Iet{xr}{“:l be points in[-L/2,L/2]. Our aim is to find a coefficient vectdg, le of

fixed length, sayld|=1 such that

N
1 .
- — e—l(x,/h)p' if =< ’
D=1 72 zqr Pl < Prmax 43

0, if |p| > Prmax
is of minimum norm. The constrained optimization problem with Lagrange multiplier
L =[P+ v(ldl* - 2) (44)

leads to
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FIG. 8. Re{f/;(p)) of the incident superoscillatory wave in the example in Sec. V A.

Tq=1q. (45)

Thus, the coefficient vectai which solves this optimization problem must be eigenvectdr.to
From Eq.(30), we obtain the general expression for the nof>?=G'Tq. Thus,d must be that
eigenvector ofT with the smallest eigenvalue.

Indeed, the position wave function determined by these coefficigriss superoscillatory:
already in Sec. IV B, we encountered the wave functions whose coefficient vectars the
eigenvectors of ! of largest eigenvalue. There, we found that these are the superoscillatory wave
functions which for a given set of constraint poiftg} are most norm expensive and which,
therefore, possesses the most pronounced superoscillations.

VIl. OPEN PROBLEMS

We know from Sec. Il C 3 that it is always possible to find incident wave functions of fixed
momentum bound that in the slit interval are matching any given template function arbitrarily
closely in thel.? norm topology. Thus, for all practical purposes, the self-acceleration phenomenon
can be tailored at will. Our method of general linear constraints can be used to explicitly construct
a sequence of momentum-limited superoscillatory wave functitg) which more and more
closely match any given template functidn The iy (x) approach®(x) in the slit interval in the
sense that they obey more and more linear constraints théftie to ®(x).

In Sec. V A and Sec. V B we showed that a close approach to a fixed template function can
be done numerically efficiently. Clearly, intuition and the easily achieved numerical accuracy lead
us to conjecture that our methods for producing superoscillations, as used in Secs. V A and V B,
do indeed always lead to convergence in tRetopology towards the template function. So far,
however, we have no proof that our particular method for producing superoscillatory wave func-
tions from linear constraints does indeed realizeltheonvergence to generic template functions.



012101-16 M. S. Calder and A. Kempf J. Math. Phys. 46, 012101 (2005)

A. Quadratic constraints

Let us ask, therefore, if there is a choice of linear constraints that directly targets the area
under the functions and that thereby directly guarantees convergencelif skase.

One may try, for example, constraints which require that the functi@isand ® enclose
equal areas on certain subintervals of the slit. This can be set into the form of a linear constraint:
Let {xJr-1 be equidistantly spaced points[iaL/2,L/2]. We require the linear constraints @)
with the constraint functions

X1
X(p) = f e P x (46)
X

and the constraint parameters

&= f k+1<I>(X)dx. (47)

While this can easily be carried out, these constraints are not directly guararitéemgvergence
towards the template function by refining the partition of the slit interval into increasingly smaller
subintervals: in principle, even functions that enclose equal areas on a very small interval may
have very different amplitudes. Let us, therefore, consider to impose constraints which require the
area of the functiof¥ (x) - ®(x)|?> on small subintervals to be small. It is clear that to this end it
would be necessary to implement also constraints that are quadratic in thé fieldVe will here
not pursue this strategy to the end. As a preliminary step, however, let us generalize our method
for constructing superoscillatory functions to include quadratic constraints.

To this end, we formulate the variational problem of finding the funcﬁb‘hof smallest norm
and with momentum cutofb,,4 Which satisfiedN linear andM quadratic constraints that tie it to
a template functior,

Pmax _
=—— Wp)x(p)dp fork=1,... N, 48
N _pmaxt/f (P)x(p)dp (48
b= = f P (PP (P Er(p)dp fork=1, ... M. (49)
V2mh Pmax

The to-be-optimized functional with Lagrange multipliék’:;g}{z':l and{,uk},'lil, reads

Pmax Pmax _
L= (u)* u) d W< d
fpmaxw (p) ¢ (p)dp - kE“—zﬂﬁ pmaxw (PX(p)dp
+2 YO (p) P (p)Ex(p)dp + c.c. (50)
k=1 \’ ~Pmax

and the Euler-Lagrange equation reduces to

1 N
—2 Mxk(p)
- \27h (=
#(p) = = . (51)

1
1 e =
\Zwﬁkzllik k(p)
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Although this may be difficult in practice, in principle, the substitution®f) into (48) and
(49) yields sufficient equations to solve for the i, and {mwJr, in terms of the{a}y, and

{bM, and this yields the solutiog*).

B. A conjecture

Consider the case of a differentiable template functibnwhose derivative is bounded,
|®'(x)|<KOxe[-L/2,L/2], for some finiteK. Assume thawﬁ’) is a sequence of incident wave
functions, calculated through the method of Sec. V A with the amplitudaﬁ&“&b() and ®(x)
matched aN equidistantly spaced pointg. We conjecture then that the suprem{gf(x)| for all
x and allN is finite as well,

L L

| <M Oxe|-=,71, (52
22

for some finiteM. This is plausible because, el$g(x)| would have to develop arbitrarily sharp

spikes away from the template function in between some two points where its amplitudes are

matched to those of the template function. From Sec. IV C, however, we expect large oscillations

in the superoscillating stretch to be norm expensive and therefore be prevented from occurring,

given that th (h:’) are optimized to possess minimum norm for a given set of constraints.

C. Convergence

Proposition 2: Assume that the conjecture of Sec. VII B holds true., {hig(x)}y converges
uniformly and in the B topology over the intervel-L/2,L/2] to ®(x) for N— oo,
Proof: Partition the slit into(N-1) equal-length intervals with théN endpoints xﬁN)
:=—(L/2)+(k=1)[L/(N-1)]. Define{an(X)}x=, bY
an) = maxxMk e {1, ... N, xV < x}. (53)

That is, ayn(X) is the closest point in the partition from the leftstoThen,

[n(X) = D(X)| < |n(X) = P(an(X)] + [P(an(X) = P(X)|
= |in(¥) = in(an())] + [ P(an(x) — D(x)|

M + K)L
< M[x= an()| + Klan(¥) - X < ML N—l) : (54)
where we applied the triangle inequality and the mean value theorem. We therefore have uniform
andL? convergence. O
Vlill. SUMMARY

We started with the method for calculating superoscillatory wave functions introduced in Ref.
6 and applied it to concrete examples. We then generalized this method so that it now allows us to
construct superoscillatory low-momentum wave functions with a wide range of predetermined
properties. Namely, we can impose any arbitrary finite number of linear constraints. We calculated
concrete examples.

Further, we addressed the question whether superoscillatory functions can be made to match
any arbitrary continuous function on a finite interval. This would correspond to imposing an
infinite number of constraints. Generally, the answer is no. However, we were able to prove that
there always exists a sequence of superoscillatory wave functions which converges in the physi-
cally relevantL? topology towards any continuous template function over an arbitrarily large
chosen interval.

This is of interest, for example, in the case of the single slit. We proved that the wave function
of an incident low-momentum particle can be chosen to arbitrary precision such that, if the particle
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passes through the slit, it will emerge with a predetermined arbitrarily large momentum expecta-
tion and with a momentum uncertainty that is as small as permitted by the width of the slit.

Our method for constructing superoscillating wave functions allows us to construct sup-
eroscillatory wave functions which match afigite numberN of properties of a given template
function (such as the template function’s amplitudes or derivatives at specified pdihis leads
to the question if by letting the number of constraiMsgo to infinity we can obtain one of those
sequences of superoscillatory wave functions which converge towards the template function in the
L2 topology.

We proved that such sequences exist but we have not proved that our particular method
produces such sequences. The numerical evidence certainly suggests that this is the case. In fact,
we found rather fast numerical convergence.

Nevertheless, it would be highly desirable to be able to prove that a given method for pro-
ducing superoscillations can be used to calculate a sequence of superoscillatory functions that
converges in th&? topology towards any given template function on an interval. An investigation
based on Weierstrass’ approximation theorem is in progdfess.

Last, we found a method for identifying a class of superoscillatory functions by looking at
their behavior in momentum space: superoscillatory functions can be viewed as functions which in
momentum space are a linear combination of plane waves with coefficients such that their inter-
ference is maximal, i.e., such that their norm is minimal.
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In this work we build a quantum logic that allows us to refer to physical magni-
tudes pertaining to different contexts from a fixed one without the contradictions
with guantum mechanics expressed in no-go theorems. This logic arises from con-
sidering a sheaf over a topological space associated with the Boolean sublattices of
the ortholattice of closed subspaces of the Hilbert space of the physical system.
Different from standard quantum logics, the contextual logic maintains a distribu-
tive lattice structure and a good definition of implication as a residue of the
conjunction. ©2005 American Institute of PhysicfDOI: 10.1063/1.1819525

I. INTRODUCTION

Quantum mechanics has profound conceptual difficulties that may be posed in several ways.
Nonetheless, almost every problem in the relation between the mathematical formalism and what
may be called “our experience about the behavior of physical objects” can be encoded in the
question about the possible meaning of the proposition “the physical mag#ithde a value and
the value is this or that real number.” Already from the first formalizations this point was recog-
nized. For example, Dirac stated in his famous book: “The expression that an observable ‘has a
particular value’ for a particular state is permissible in quantum mechanics in the special case
when a measurement of the observable is certain to lead to the particular value, so that the state is
an eigenstate of the observable. It may easily be verified from the algebra that, with this restricted
meaning for an observable ‘having a value,’ if two observables have values for a particular state,
then for this state the sum of the two observalgiethe sum is an observabléas a value equal
to the sum of the values of the two observables separately and the product of the two observables
(if this product is an observabléhas a value equal to the product of the values of the two
observables separatel%?”l’his last point is the requirement of the functional compatibility con-
dition (FUNC), to which we will return later. As long as we limit ourselves to speak about
measuring results and avoid being concerned with what happens to nature when she is not mea-
sured, quantum mechanics carries out predictions with great accuracy. But, if we naively try to
interpret eigenvalues as the possible or actual values of the physical properties of a system, we are
faced with all kinds of no-go theorems that preclude this possibility. Most remarkable is the
Kochen—SpeckeiKS) theorem, which rules out the noncontextual assignment of values to physi-
cal magnitudes’ Of course, to restrict the valuation to a subset of observables—typically to a
complete set of commuting observabl€&SCO which constitutes @ontext—and refer to values
of physical variables only in the sense allowed by the mathematical formalism, ensures no con-
tradiction. So, a widely accepted position is to abandon seeking to describe what nature at the
quantum level is and use the theory as a mere instrument of prediction. But, there are also different
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proposals to investigate how to assign objective and measurable properties to a physical entity, i.e.,
how far we can refer to physical objects without contradiction with quantum theory. This paper is
framed in that search.

Our proposal is to construct a logic to enable not only a Boolean valuation in each fixed
context but also that, once chosen, certain set of projectors of the spectral decomposition of the
operators(correspondingly, closed subspaces of Hilbert spgehat admits a global Boolean
valuation, to make it possible to refer at least partially to projectors pertaining to other contexts
with the least arbitrariness.

Let us be concerned here with the simplest cases: pure states of the system are represented by
normalized vectors of{ and dynamical variableé by bounded self-adjoint operatoss with
discrete spectra. The possible results of the measuremen(isbig) magnitudeA are the eigen-
valuesa; pertaining to the spectrumi(A) of its associated operatév. To each of the eigenvalues
a, corresponds a projectd?; and correspondingly a closed subspaceHofEvery A admits a
spectral decomposition

A=2 aP,

where the equality is considered as a convergence in norm. So, observables may be discomposed
to give an exhaustive and exclusive partition of the possible alternatives for the results of mea-
surements. The probability to obtain one of them in an experimental procedure is given by the
Born rule.

Now, let us suppose the state of the physical system is an eigenvector of a nondegenerate
observableA (i.e., A constitutes a CSCPOso we know the eigenvalues of all projectors
Pi,P,, ... ,P,,... of A for the system in this state. If ar¥ lies in the spectral decomposition of
another observablB, then this “part” ofB can be valued in a Boolean way. It is important to
realize that this allows one to refer to observables pertaining to a CSCO from another CSCO. In
categorical terms, this will be related to the possible local sections of a sheaf satisfying a certain
kind of compatibility with respect to fixed contexts, to be exactly stated in what follows. From this
formal analysis in terms of sheaves, we intend to build the mentioned logic, which we will call
contextual logic This contextual logiowill allow us to formalize to what extent we can consider
as objective properties of a physical system those properties represented by projectors pertaining
to different contexts without facing no-go theorems. We will use a categorial frame to develop this
logic, as has been the case during the last years, when applications of category theory tools to
logical questions in standard quantum mechanics have begun to dfgeaxample, Isham and
Butterfield>%**®also in the consistent histories approatim the interpretation of the Sasaki
hook as an adjuncti&rand, in general, in the Geneve—Brussels appﬁo%lz)h

In Sec. Il we introduce basic notions about lattice theory and topics in categories. We devote
Sec. lll to the problem of the valuations of physical magnitudes pertaining to different CSCCs. In
Sec. IV we face the same problem from the point of view of sheaves, relating it to the dual spectral
presheaf introduced in Ref. 15. In Sec. V we develop the contextual logic in a Kripke style and
intuitionistic way. Finally, in Sec. VI we outline our conclusions.

II. BASIC NOTIONS

We recall from Refs. 3, 4, 11, and 18 some notions of the lattice theory and categories that will
play an important role in what follows.
First, let (A, <) be a poset anKCA. X is decreasing seif and only if for all xe X, if a
<x thenae X. For eacha e A we define theprincipal decreasing seassociated witha as (a]
={x e A:x<a}. The set of all decreasing sets Anis denoted byA*, and it is well known that
(A*, C) is a complete lattice; thuéA,A*) is a topological space. We observe thaGit A* and
ae G, then(a]C G. ThereforeB={(a]:a e A} is a base of the topologk*, which we will refer to
as thecanonical baself XCA, we denote byX the border ofX, C(X) the complement oX and
X° the interior ofX.
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Let A be a category. We denote I9b(.A) the class of objects and b&r(A) the class of
arrows. Given an arrof:a— b, a is called domain of(a=dom(f)) andb is called codomain of
f(codf)). We denote bya,b] , the class of all arrowa— b in the category and by,lthe identity
arrow over the objech. A is said to besmall categonyif and only if Ob(A) is a set. A partially
ordered setP, <) gives rise to a category with the elementsPofis objects, and with precisely
one arrowp— (q if and only if p<q. In this case(P, <) is a small category. The category whose
objects are sets and arrows are functions with the usual composition is dendiets by

Let| be a topological space. gheafoverl is a pair(A,p), whereA is a topological space and
p:A—1 is a local homeomorphism. This means that eaehA has an open sé&b, in A that is
mapped homeomorphically hyonto p(G,)={p(x):x € G,}, and the latter is open ih It is clear
that p is a continuous and open map.dfA—1 is a sheaf ovet, for eachi €1, the setA;={x
e A:p(x)=i} is called thefiber overi. Each fiber has the discrete topology as subspaée lobcal
sectionsof the sheap are continuous maps: U — A defined over open proper subset®f | such
that the following diagram is commutative:

v
U — A
IU\E lP
U

In particular, we use the teriglobal sectiononly whenU=I.
Given the categoryl, one can form a new categoAPP, calleddual category ofA4, by taking
the same objects but reversing the directions of all the arrows and the order of all compositions.
Ens’” or A, where A is a small category, is the category whose objects are fun&as’?
— Ens(also calledbresheavesand whose arrows are natural transformations between presheaves.

A is a topos, i.e., has terminal object, pullbacks, exponentiation, and subobject classifier. The

terminal object inA is the functorl: A°°— Ens such thatl(A)={*} (the singletoi for eachA
€ A and for each arrow, 1(f)=1;,. For any preshedf: A°°— Ens the unique arrowr — 1 is
the natural transformation whose components are the unique funé&idns-{*} for each object
Ain A. Pullbacks, limits, and colimits are defined componentwise.

A local sectionof a presheaF: A°°P— Ensis a natural transformation: U — F such thatU is
a subfunctor of the presheaf We only refer toglobal sectionsn the case that)=1.

Ill. THE QUESTION OF VALUATION

Let H be the Hilbert space associated with the physical systeniLéHdl be the set of closed
subspaces ofi{. If we consider the set of these subspaces ordered by inclusion| {f&nis a
complete orthomodular lattic€.It is well known that each self-adjoint operatarhas an associ-
ated Boolean sublattio&/, of L(H). More preciselyW, is the Boolean algebra of projectdPsof
the spectral decompositioh=2; a;P;. We will refer toW, as the spectral algebra of the operator
A. Any proposition about the system is represented by an elemérit-fwhich is the algebra of
quantum logic introduced by Birkhoff and von Neumann.

Assigning values to a physical quantifyis equivalent to establishing a Boolean homomor-
phism v:W,—2,"> 2 being the two-element Boolean algebra. So, it is natural to consider the
following definition.

Definition 3.1: Let(W,);., be the family of Boolean sublattices of ). A global valuation
over L(H) is a family of Boolean homomorphism@;:W,—2);.; such that v;|W,NW,
=v;|W,NW, for each ij .

This global valuation would give the values of all magnitudes at the same time maintaining a
compatibility condition in the sense that whenever two magnitudes shear one or more projectors,
the values assigned to those projectors are the same from every context.

But, KS theorem assures that we cannot assign real numbers pertaining to their spectra to
operatorsA in such a way to satisfy the functional composition princi&NC), which is the
expression of the “natural” requirement mentioned by Dirac that, for any opekatepresenting
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a dynamical variable and any real-valued functidA), the value off(A) is the corresponding
function of the value ofA. This is a very restrictive constraint because it does not allow assign-
ment of values to all possible physical quantities or assignment of true—false as truth values to all
propositions about the system, nor even noncontextual partial ones. KS theorem means that, if we
demand a valuation to satisfy FUNC, then it is forbidden to define it in a noncontextual fashion for
subsets of quantities represented by commuting operators. In the algebraic terms of the previous
definition, KS theorem reads:

Theorem 3.2: If H is a Hilbert space such that difi)>2, then a global valuation over
L(H) is not possible O

Of course, contextual valuations allow us to refer to different sets of actual properties of the
system which define its state in each case. Algebraicallgpratextual valuatioris a Boolean
valuation over one chosen spectral algebra. In classical particle mechanics it is possible to define
a Boolean valuation of all propositions, that is to say, it is possible to give a value to all the
properties in such a way of satisfying FUNC. This possibility is lost in the quantum case. And, it
is not a matter of interpretation, it is the underlying mathematical structure that enables this
possibility for classical mechanics and forbids it in the quantum case. The impossibility to assign
values to the properties while at the same time satisfying FUNC is a weighty obstacle for almost
any interpretation of the formalism as something more than a mere instrument.

IV. SPECTRAL SHEAF

L(H) being the lattice of closed subspaces of the Hilbert sgacae consider the familyV
of all Boolean subalgebras of the lattit¢7) ordered by inclusion and the topological space
W, W), On the set

E={W,):We W, f:W— 2isa Boolean homomorphigm

we define a partial ordering given as

(Wllfl) = (Wz,fz) = Wl C WZ and fl = f2|Wl.

Thus, we consider the topological spa@gE*) whose canonical base is given by the principal
decreasing set§W, f)]={(G, f|G): GC W}. By simplicity ((W,f)] is noted agW, f].

Proposition 4.1: The map ;£ — W such that(W, f)—W is a sheaf oveW.

Proof: Let (W, f) € E. If we consider the open s€W,f] in E, thenp((W,f])=(W], and as a
consequence((W,f]) is an open set ivV. If we denote byp’ the restrictionp|(W, ], then from
the definition ofp it is clear thatp’ : (W, f]— (W] is a bijective map that preserves order inclusion.
Thus,p’ is a continuous map. Finally is a local homeomorphism. O

We refer to the shegh: E— )WV as thespectral sheaf

Proposition 4.2: Letv:U—E be a local section of the spectral sheafThen, for each W
e U we have

1 »(W)=(W,f) for some Boolean homomorphismf— 2,
(2) if WogW, then V(Wo):(Wo,f|W0).

Proof: Sincev is a local section we consider the following commutative diagram:

v
U — FE

IU\E lp

U

(1) It follows as an immediate consequence of the commutativity of the diagram.

(2) Sincev is continuousy™ (W, f]) is an open set iV (i.e., a decreasing getConsequently,
W, e v (W, f]) since WoCW and We v (W, f]). Thus, ®(W,) e (W,f], resulting in
(Wo) =(Wp, f|Wo)- U



012102-5 Contextual logic for quantum systems J. Math. Phys. 46, 012102 (2005)

From the physical perspective, we may state that the spectral sheaf takes into account the
whole set of possible ways of assigning truth values to the propositions associated with the
projectors of the spectral decompositidr=2; a,P;. The continuity of a local section gF guar-
antees that the truth value of a proposition is maintained when considering the inclusion of
subalgebras. In this way, th@ompatibility conditionof the Boolean valuation with respect of
intersection of pairs of Boolean sublatticesldf{) is maintained.

A global sectiont:W—E of p is interpreted as follows: the map assigns to ewaty W a
fixed Boolean valuatiorr,: W— 2, obviously satisfying the compatibility condition. So, KS theo-
rem in terms of the spectral sheaf reads:

Theorem 4.3:If H is a Hilbert space such that diff() > 2, then the spectral sheaf p has no
global sections O

We may build acontextual valuatiorin terms of a local section as follows:

Let A be a physical magnitude with known value, i.e., we have been able to establish a
Boolean valuatiorf:W,— 2. It is not very hard to see that the assignment

v:(W] — E such that for eachV; e (W], »(W,) = (W, f|W),

is a local section op.

To extend contextual valuations we turn now to consider local sections. To do this we intro-
duce the following definition:

Definition 4.4: Letv be a local section of p and Y\the spectral algebra associated with the
operatorA. Then, an extended valuation over A is given by the set

Y(A) ={Wg € dom(v):Wg C W,}.

Given the previous definition, it is easy to prove the following proposition:
Proposition 4.5: Ifv is a local section of p and Wthe spectral algebra associated to the
operatorA, then

(1) v(A) is a decreasing set
(2) if Wye U thenv(A)=(W,]. O

We can start from the spectral sheaf to build a representation as presheaf such that local
sections of the former are identifiable to local sections of the latter. When considering the family
W ordered by inclusion)V can be regarded as a small category. Thus, we can take the topos
preshealV. DenotingE,y the fiber of the spectral shepfoverW for eachW e VW, we consider the
following presheaf:

D:W°P — Ens

such that

(i) D(W)=Ey for eachW e Ob(W);
(i) if i:W,CW, lies in Ar(W), thenD;:D(W,) — D(W,) is such thaD;(g)=g|W;.

It is clear that the presheaf acting over arrows satisfies the compatibility condition. Denoting
Seg andSeg, the sets ofglobal and locglsections ofp andD, respectively, we can establish the
following proposition:

Proposition 4.6:

Seg = See.

Proof: Let v:U—Ee Seg and consider the preshegf:w"peEns whose action over
Ob(W) is given by
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{*}, fWeU
@, otherwise,

D(\N):{

and whose action over arrows is immediate. It is clear thas a subfunctor of the presheaf
From U we construct a natural transformation

such that, for eachVe W, 7,(U(W))=»(W). Thus, we have a maPeg— Seg, given by v— 1,
It is not hard to see that this is an injective map. To see that it is also a surjective map, we consider

a section of the preshed, namelyr:D—>D, and we prove that there exists a sectioof the
spectral sheaf such that—7,=7. Let U={We W:D(\N):{*}}. If WeU and W,CW, then
D(WO):{*}, sinceU is a contravariant subfunctor df Thus, W, lies in U, resulting inU, a
decreasing sefi.e., an open sgtin W. Now, we consider the map: U —E such that, for each
We U, v(W)=(W, T(D(VV))). It is clear that the following diagram is commutative:

v
U — FE
IU\E lP
U

Now, we prove thab is a continuous map. LéW,, f] be an open set of the canonical base of
E, v {(W,f])={We W: (W) e (W,,f]}, and we assume that((W,,f]) is not the empty set.
Let We v 1((W,,f]) and W,CW. Since r is a natural transformation, it follows tha{D(Wx))
=7(U(W))|W,. Sincer(W) e (W,,f], it is clear thatv(W)=(W, f|W), resulting thatU(W,)="f| W,
and W, e v"1((W,,f]). This proves the continuity of the map. It is not very hard to see that
=7, thus it is proved that it is a surjective map. O
Remark 4.7The presheab from the spectral sheaf is the dual spectral presheaf defined in
Ref. 15.
Taking into account the last Proposition, we can write KS theorem in terms of presheaves
from the spectral sheaf:
Theorem 4.8:If H is a Hilbert space such that diff¢) > 2, then the dual spectral presheaf
D has no global sections O
Possible obstructions to the construction of global sections for the case of finite dimensional
‘H are shown in Ref. 12.
On the other hand, in terms of a local sectiai — D of D, extended contextual valuations
over an operatoA may be defined as

V(A) ={Wg C Wa:U(Wp) ={*}}.

Valuations are deeply connected to the election of particular local sections of the spectral
sheaf. So, we see here once more that we cannot speak of the value of a physical magnitude
without specifying this election, which clearly means the election of a particular context. This is in
agreement with the statement that contextuality is “endemic” in any attempt to ascribe properties
to quantities in quantum theoriés.



012102-7 Contextual logic for quantum systems J. Math. Phys. 46, 012102 (2005)

V. CONTEXTUAL LOGIC

We know that ifW is the family of Boolean subalgebras lof+), to take a local section of
the spectral sheaf means an assignment of Boolean valuations to algebras in the proper subfamily
Dom(») maintaining the compatibility condition. Now, an interesting question is to ask wbah
“tell us” aboutW whenW ¢ Dom(v). Let us state more accurately this expression to precise our
aim in the search of aontextual logic

Definition 5.1: Letr be a local section of the spectral sheaf. IEWDom(v) and W5 C W,,
then we will say that \WhasBoolean informatioraboutW,.

Clearly, this means that, in a given state of the system, the complete knowledge of the spectral
decomposition oB lets us know the eigenvalue of one or more projectors in the spectral decom-
position of A. Contextual logicallows some kind of “paste” among Boolean sublattice& (%)
and so among CSCOs. A valuation in terms of decreasing sets maintains it “downstream” with
respect to subalgebras, i.e., when the valuation of a subalgebra is given, all its subalgebras are
automatically valuated. This makes it possible to have Boolean information of different contexts
from the one chosen in the following sense: once fixed a local seetighWg € Dom(v) and
W, ¢ Dom(v) then, referring tow, from Wz takes into account the Boolean information that
WgN'W, has aboui,.

We will now construct a propositional languagelffor contextual logic whose atomic for-
mulas refer to the physical magnitudes represented for bounded self-adjoint operators with discrete
spectra. Intuitively, we can consider the set of atomic form(tass

P ={A:A bounded self adjoint operato}.

Then, this language is conformed as follows:

Self=(P, 0, 0, — ,—,

and it is clear that the formulas may be obtained in the usual way.

We will now turn to the use of Kripke models built starting from any local section of the
spectral sheap because it allows us to naturally adapt the idea of Boolean knowledge. Thus, the
obtained valuation will result in an extended contextual valuation.

Definition 5.2:We consider the pos€V, C) as aframefor the Kripke model forSelf Let v
be a local section gf. Thus, we define the Kripke modah =(V, v) with the following forcing:

(1) Mil=y Aif and only if We v(A) with Ae P,

(2) Mll=y a0 if and only if M=y a or Mll=y B;

B) Mil=y a0 if and only if Ml=y a and Mll=y, B;

4 Ml=y a— B if and only if OBCW, if Mll=g a, then Ml=5 B;
(5) Mil=y—aif and only if OBCW Mll#g a.

Given this forcing we can accurately define the idea of extended contextual valuation over
Self

Definition 5.3: Given a local sectiom over g an extended contextual valuation is the map
v:Self—=W" defined as

Ua) ={W:Mll =y, a}.

Taking into account thatV* is a topological space, it is not very hard to see #af) is an open
set of WW. Now, we can to establish the following proposition:
Proposition 5.4: Leta be a formula in Self and consider the Kripke modél=(W, v). Then

1) Mil=y—aif and only if We (Cv(a))°,
2) Mil#w a and Ml#y—« if and only if W e dv(a).

Proof: (1) If Ml=y—a, thenOBCW, Mll#z a« andOBCW B¢ v(a). Thus(W]C (Cv(a))°
andW e (Cv(a))°. On the other hand, W e (Cv(a))°, then there exists an open €&in ¥ such
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that We GC C(v(a)). SinceG is a decreasing set, we have tH{&¥/]C GC C(v(a)) and MIl
=y—a. (2) It follows from (1) and the fact thatV=v(a) U (C(a))° U dr(a)). O
Remark 5.5Following the usual interpretation of the Kripke model, the frame represents all
possible states of knowledge that are preserved forward in time. In our case, thé)tame, W
represents all states of Boolean knowledge in the sense of all possible Boolean valuations of
spectral algebras, and the usual notion of “preserving knowledge through time” must be under-
stood in terms ofC as “preserving valuations in spectral subalgebras.” The forKirgy « is
interpreted ashe spectral algebra W has Boolean knowledge ahgute., the complete Boolean
valuation of W is known andW lies in the decreasing set associated with the formuldy
Proposition 4.5, to know the eigenvalue Afis expressed in terms of the forcing A8l=,) A
W* being a topological space, it is a Heyting algebra with meet and join operations, the
classical ones and implication and negation defined as follows:

S—T={P e W:OXCP,if X € S then Xe T},

~S={Pe W:OXCP,XeS.

Thus, the extended contextual valuation is a Heyting valuatioBedfffrom the Heyting algebra
W* such that

D HaOB=ra) UK
@ WaOp=ra)NHP);
3 Ha—p=a)—1p);
@ H-a)=—Ha).

Taking into account the restrictions in the valuations imposed by the KS theorem, a Heyting
valuationv: Self—W" such thatv(A)=(A] for each atomic formula\ is not possible. So, it is
clear that contextual logic is an intuitionistic logic in which not all of the Heyting valuations are
allowed.

~| =l

VI. CONCLUSIONS

Contextual logic is a formal language to deal with combinations of propositions about physi-
cal properties of a quantum system that are well defined in different contexts. These properties are
regarded from a fixed context, which guarantees the avoidance of no-go theorems. This means that
one can refer to contexts other than the chosen one by building a Kripke model in which each
proposition is given a decreasing set as its truth value.

There are different formal languages on the orthomodular lattice of closed subspékes of
(such as orthologic or orthomodular quantum I9glut these logics give rise to different prob-
lems that lack an intuitive understanding, such as the “implication prob{bngfly, eight differ-
ent connectives may represent the material conditional; see R&nXhe contrary, as contextual
logic is an intuitionistic one—with restrictions on the allowed valuations arising from the KS
theorem—it has “good” properties as the distributive lattice structure and a nice definition of the
implication as a residue of the conjunction. The price paid is it being a contextual language. But,
this is not a difficulty, it is a main feature of quantum mechanics.
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Two and three dimensional Hamiltonians with generalized and ordinary shape in-
variance symmetry have been obtained by Fourier transforming over some coordi-
nates of the S{B) Casimir operator defined on $8)/SU(2) symmetric space. It is

shown that the generalized shape invariance of the two dimensional Hamiltonian is
equivalent to SIB) symmetry while in the three dimensional one, the ordinary
shape invariance is equivalent to contracted3ldnd there is one to one corre-
spondence between the representations of the generalized shape invariance symme-
try of the two (three dimensional Hamiltonian and $B) [contracted S(B)]

Verma bases. @005 American Institute of PhysicEDOIl: 10.1063/1.1827325

I. INTRODUCTION

Exactly solvable potentials are the central and fundamental problems of mathematical physics,
consequently they have attracted much interest both in theoretical physics and mathematics. There
are many methods of obtaining exactly solvable potentials in quantum mechanics. The most
powerful methods are the algebraic metaiipersymmetric and shape invariant factorization of
the Schrddinger equation in one and two or three dimensional exactly solvable modelsll
these works it is shown that there is a close connection between the shape invariance symmetry of
one or higher dimensional Hamiltonians and some rank one semisimple Lie algebra or higher rank
nonsemisimple algebras, where this equivalence between the one dimensional shape invariant and
the rank one semisimple Lie algebra has been shown in Ref. 6.

Here in this work we introduce two and three dimensional Hamiltonians with a new kind of
shape invariance. It is shown that the shape invariance symmetry of the two dimensional Hamil-
tonian is equivalent to S@8) symmetry where we call it generalized shape invariance while the
shape invariance associated with the three dimensional Hamiltonian is equivalent to contracted
SU(3) ordinary shape invariance and there is one to one correspondence between the representa-
tion of the generalized shape invariance symmetry of (thoeg dimensional Hamiltonians and
SU(3) [contracted S(B)] Verma bases.

The paper is organized as follows: In Sec. Il after introducing the parametrization (8§ SU
Lie group we derive its right invariant vector fields and Casimir operator of888U(2). In Sec.

[, using the Fourier transformation together with the coset reduction we obtain the two dimen-
sional HamiltoniarH,(m;,m,) of charged particle o6 sphere in the presence of an electric field.
Section IV is devoted to S@3) Verma basi<, and their connection with eigenspectrum and de-

3Author to whom correspondence should be addressed. Electronic mail: t-panahi@guilan.ac.ir
PElectronic mail: jafarizadeh@tabrizu.ac.ir
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generacy of the above Hamiltonian. In Sec. V we talk about the generalized shape invariance of
this Hamiltonian. In Sec. V, through Inonu-Wigner contrac&ﬁthU(S), we obtain three dimen-
sional ordinary shape invariance Hamiltonians. The paper is ended with a conclusion and one
appendix.

II. THE RIGHT INVARIANT VECTOR FIELDS AND QUADRATIC CASIMIR OPERATOR
OF SU(3) GROUP OVER THE SU(3)/SU(2) COSET MANIFOLD

According to Ref. 9, we can parametrize an arbitrary element of th€3)$8U(2) coset
manifolds in the following form:

sin(6) 0 cog h)erx
U=|-cogb)codp)dex)  sin(p)e”  sin(f)cog )X |, (2.1
- cog)sin(p)e™1 - coqe)e T sin(6)sin(¢)e”
where 0< 6, o< /2 and 0< 7, x1, x> <2m. Now, an arbitrary element of §8) group manifold

can be obtained by multiplying the coset element giveri2iri) by an arbitrary element of
stability group SW2) with the parametrizatioh=exp(iAsa@)expiN,B8)expliNzy) from left or right,

where 3< 3 Hermitian Gell-Mann matrices;, i=1,2, ...,8 aralefined as
010 0 -i O 1 0 O
NM=[1 0 0f, A=|i O Of, A=|0 -1 0],
000 0 0 O 0O 0 O
0 01 0 0 -i 000
=10 0 0], Ns=|0 O 0], Ng=|0 O 1], (2.2
100 i 00 010
00 O 1 10 O
A={0 0 —i|, Ng=—%=(0 1 O
0i O oo -2

Usually the right invariant vector fields of $8) group manifold can be obtained from the right
invariant s@3) Lie algebra valued one formﬁdG‘lze'ﬂ de# N, with G=Uh,*° Wheree'ﬂ are right
invariant fiel-beins ands“=(6, ¢, 1, x1,x2,@,3,y) are coordinates of S8@) group manifold.
Then the right invariant vector field can be writtenRs e/(d/ 9&*), whereel* are the inverse of
the right invariant fiel- belne Now, the SUW3) right invariant vector fields over the $8)/SU(2)
coset manifold™*? can be obtamed simply by projecting the @Wright invariant vector fields
over the principal bundle S@3) to the base manifold S3)/SU(2), where it leads to the vanishing
of the components which are tangent to(3)Jiber manifold(stability group.

Using the above prescription, after some lengthy and tedious calculation via Maple software
we get the following expressions for the @Yright invariant vector fields over the $8)/SU(2)
coset manifold:

R, = % (X1~ xZ)[ F cos(qo)— * COt(H)SII’]((p)—‘P +i tarw)cos(go); (f(())st((i)) &ij , (2.3
1 cot() 4

. ico§(0)—sinz(0)sin2(<p)i+_cot(0)i]

sin(26)sin(¢) dx;  Sin(e) dxo |’ 2.4
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1 p g 9 P
X, = —e“"XZ{I— =i cot(<p)(— - —) +2 Cot(2qo)—} , (2.9
2 dp an  Ixa X2
il o 0 V329 a9 o
Ry=— o L2, Rz (22_ 2 _ 7)) (2.6
2\dx1 I 2 \3dn 1 Ix2

WhereRi:%(thiRz), YJ_,:%(RZ‘I iRs), andXi:%(RﬁiiRﬁ. After some algebraic calculations one
can show that, the above generators satisfid)slie algebra commutation relations. Also it is
straightforward to show that the following defined(3uquadratic Casimir operator commutes
with all of the above generators

C=3(RR +RR,) +3(Y,Y_+ YY) + 5(X.X_+ X X,) + RE+Rj, 2.7

where after calculations, we obtain the following expresglmnignoring the facto&):

Tl TsitG o T 3si(@sitle) o Sir(0)co2(0)SiP(e) oy
. 1 s 2 ( P .\ ;P )
sinz(a)sinz(go)cos?(go)&)(g Sirt(0)sirt(@) \ andxy  Indxa  Ix19X2
2(4co2(0)-1) d 2co(2¢) 9 }
+ —+ — .

sin26) 90 sirk(6) de

oo P 1 & 4—co§(¢9)sinz(qo)—c0§(qo)(9_2+ 1-sirk(f)cos(e) &

(2.9

Similarly we can calculate the $B) left invariant vector fields, where its structure constant, is
minus the right invariant ones but its quadratic Casimir operator is the same as the right one. Here
we need only the right invariant vector fields and we do not need to quote the left invariant ones
here. Also one can show that the Casimir operator is the same as Laplace—Beltrami operator of
adjoint invariant metric.

IIl. REDUCTION OF THE CASIMIR OPERATOR TO TWO-DIMENSIONAL HAMILTONIAN
OF A CHARGED PARTICLE ON S? SPHERE

In order to reduce the SB) Casimir operator together with its right invariant vector fields
defined on SIB)/SU(2) coset manifold to a two-dimensional operator, first we eliminate the
coordinates by Fourier transforming over the coordinaieby kernele”, where after similarity
transformatiorR— (8, )Rf(8, ¢) with similarity function (9, ¢)=sin(6)/cog #)sin(2¢) the
right invariant vector fields and their quadratic Casimir operator take the following form:

R, = %eﬁi(’(l‘)@{ ¥ COS(QD)(% + cot(a)sin(go)fp +i tar(ﬁ)cos(qo)aix1
L0010 0 cos(0)- co§(<p)sinz(t9)} | 3.1
cod¢) dx» sin(26)cog )

S N K _cos(6) - Sinz(H)Sinz(go)i

Y, = > X [iSIn(qo) Y + cot(H)coq ¢) Py + 2i sin20)sin() P
L CoU0) o cos(0) - si(g)sirf(0)  cot) ] | (3.2

sin(e) dxs sin(26)sin(¢) sin(e)
X, = 1e%[ =7 4icotle)-L +2i cot(2¢)-2- + cot(2¢) + | cot@)] , 3.3
2 dp X1 X2
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il a0 i3( o o I
Ry=—(——-——], Rg=-—|——+—-2i-]. (3.4)
2\dx1 Xz 2 \dx1 dx2 3

One can straightforwardly show that the above generators satigdy Isie algebra commutation
relations

[Re,R.]=+R., [RsY.]=%3Y., [Re,X.]=%3X,,

- —
[ /

/3
[Re, Y] = i\?Y:ﬂ [Re, X:]= =+

[R,RI=2R; [R.Ys]=

[Y,,Y.]=Rs+V3Rs, [X.,X.]=Rs—\3Rs [Yi,X.]= T R.. (3.5

Also the Casimir operator reduces to

oo & ; 1 & 1 (1 - sirf()cos () #
=7 e oot )aa SIn?(0) dg? sinz(e)sinz(go) 020  of
1 P & a9
+ COS’)'((,D)O'?_X% + Zm - 2il <al + ﬂ_)(z) - —(4 C0§(0)Sln2(go) CO§(§D)))
1 cot(2¢)
+ 4tar12(0) + cof(6) + S8 } . (3.6

For convenience we have denoted the reduced generators with the same notation of the preceding
section. Now we eliminate the coordinatgsand x, through Fourier transformation over them
with the kerneldMx1-™x2) then Casimir operatai3.6) reduces to the following Hamiltonian:

1 P
Hy(my, my) = - (S ¥ sin(6) " S M) +Vim,m,(6,0) (3.7
with
_ 1 mi(1 - sirf(O)cos(e) My B B
V"ml'mz(a'(P)_sinz(a)sinz(qa)( cog(6) cosz(go) 2mym, = 21(rmy = my)
2
+ '5(4 ~ co(0)sink(e) - co§(<p))) - %tar?(&) _ col(0) - c;t;i;g) . (3.9

On the other hand, the dynamical symmetric of motion of a charged particle in the presence of an
external electromagnetic field on the symmetric spaces can give the following nonrelativistic
Hamiltonian for motion of a charged particle on the two dimensional manifold with mgrian

the presence of static electromagnetic fields with vector pote&tifrid scalar potentiaV as?

H=- %(aﬂ ~iA,)(Jgg"(d,~iA,) +V, (3.9
\

whereg is the determinant of metrig,,. Therefore, the Hamiltonia(2.8) can be interpreted as
the Hamiltonian of a charged particle & sphere with metric
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—(l 0 ) 3.10
9=\0 sir(e) )’ (3.10

in the presence of an electric field with scalar poten(ad).

IV. THE ALGEBRAIC SOLUTION OF THE HAMILTONIAN BY USING VERMA BASES

Here in this section we try to solve our Hamiltonian algebraically, that is we will obtain its
eigenspectrum by using the Verma bases @8sar A, Lie algebra. According to Ref. 7, Verma
bases of the irreducible representation space) of A, overC Lie algebra, where\ =(p,q) is the
highest weight, consist of all vectors

Fef52f 2 p. g, (4.2)
such that
Osa<p, Osasqg+ay, O0saz=minqga,], (4.2
whereeg, f;, h;, i=1 and 2 are base &, Lie algebra satisfying the commutation relations
[elifi]:hi! [hivel]zzeI! [hivfi]:_Zfi! [ =1,2 (43)

for each simple rooty;=(%,3/2) and a,=(%,-13/2). Now, by comparing the commutation
relations

[Y.,Y1=Rs+ V3Rs,  [Ry+ V3Ry, Y] = £2Y,,
[X,,X_.]=Rs— V3R, [Rs—13RgX.]= *2X, (4.4)
with (4.3) we have
-
h]_: R3+ \”3R8, 61:Y+, fl:Y_,
h,=Rs—\V3Rg, €=X,, f,=X_. (4.5)
In an arbitrary representation 8§ with highest weightA(p,q), the highest eigenweight satisfies

elp,gy=0, i=1,2. (4.6)

Therefore, the highest eigenfunctiaf (6, ¢, x1,x2) ={(x2, x1, ¢, 0| p,q) satisfies the following
first order linear differential equations:

_ d 9 _.cos(6) - sirf(0)sirt(¢) o _cot(6) 9
[S'”(‘”)a_e”"“”"“‘”)%*z' Sin20sing) o sine) ax;
~ coS(6) - sirf(¢)siré(6) il cot(6)

sin(26)sin( ) sin(¢p)

:|¢p'q(91(PaXlaX2) =0, (4.7

[— 2 1 cotl)— +2i cot2e)—> + cot2¢) + cot@)} WPU0, 0 x1x) =0, (4.8)
Je X1 X2

On the other hand, the highest eigenweight is the eigenstate of the Cartan subalgeBaanith
Rg as its Gell-Mann basi, where the baselsal and ha2 are associated with simple roatg and
a,, and they can be written in terms of these bases in the following torm:
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hal = RS + \,”ERS, ho[2 = R3 - \’§R8 (49)

Writing the highest eigenweight in terms of fundamental weights, that=igu’+qu? and con-
sidering the following relation between the simple roots and fundamental weights:

2M =4, (4.10

(ag,07)

we can write

(Rs+ V3Rg) P96, 0, X1, x2) = {1, Ry + VERs)‘ﬂp’q(@, ®, X1, X2)

= <Mrhal>wpvq(01§0lX1X2) = 2wa,Q(0’¢'X1,X2)
(ag,aq)
or
(R + \"§R8)¢p’q(9, @, x1x2) = PYP U6, ¢, x1,x2) - (4.11)

Similarly by acting out the other basis of Cartan subalgebra on highest eigenweight we obtain

(Rs = V3Re) P90, 0, x1x2) = A6, 0, X1, X2) - (4.12

The above eigenvalue equations imply the followjngand y, dependence of highest eigenweight
lpp,q(g, ¢1X1!X2)1

P90, 0, x1 Xo) = e(i/3>(2p+q+l)xle—<i/3)<p+2q—l)de, PA(g, ). (4.13

Substituting(4.13 in (4.7) and (4.8), we see that the integrability of the latter equation requires
that p=qg+l, that is for given values of the parameteronly the representation&+1,q) are
relevant to the eigenspectrum of our Hamiltonian. Hence, integrating(Eq%.and (4.8) we get
the following expression for the highest eigenweight in these particular representations:

(0,0, x1, x2) = € @XN (cod()sin™(H)cos (6) Vcod H)sin(2¢)). (4.19

Now, using the formulg4.1) we can obtain the lower eigenweights or Verma bases,

#3323 (9,0, y1,x5) = YXE2Y24 % (6, 0, X1, X2), (4.15

where O<a;<q+l, 0<a,<q+a;, 0<ag=min[g,a,]. In order to obtain eigenspectrum of the
Hamiltonian(3.7), it is sufficient to eliminatey; and y, coordinates dependence of @JVerma

basis by Fourier transforming over them. This can be achieved simply by shifting the phase factor
g(@xi-ax2 to the left-hand side of lowering operatoxs and Y_ in the above relation and
integrating over the coordinatgg and y,. Hence, we obtain

BT (0,6, x1,x) = PSR, L (0,0), (4.16

g+l-a;-
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where

xgiu_al_a3,q_a2(0,qo) = (H Y (q+l-a-i+1,0- az)) (H X(q+l-a,q-i+ 1))

i=1 i=1

X (H Y_(q+1-i+ 1,q)) (codl(p)sin™1(h)cos™ (6)\cod H)sin(2¢)),
i=1

(4.17)

and the operators appear in the productbl@sK (i) =K(m)K(m-1)---K(1) also the Fourier trans-
formed operators have the following form:

R.(my,my) = {+ c08(<p)— + cot(ﬁ)sm(q:)— —my tan(6)cog )

cot(6) 0052(0) - co§(<p)sm2(0)]
e cos(cp) sin(26)cog o) ' (4.18
1 S(6) - sirf(6)sir?
Y. (my,my) = E[isin(go)% + COt(ﬁ)COS(go)% - 2m1CO (sei)n(zs;)si(:():; (¢)

cot(6) _ 0052(6) sirt(¢)sir?(6) .l cot(6) } .19

sin(g) sin(26)sin(¢) sin(e) |’ '
X, (my,my) = %{ r i - my cot(p) + 2m, cot(2¢) * cot(2¢) + | COt((p):| , (4.20

1 \6 2

Ra(my,mp) = 5(my +my), Rs(mbmz):?(ml‘mz‘é')- (4.21

Now, by definingm,=q+l-a;—a; andmy,=q-a,, we see that due to the inequalitiet?2), the
parametersn; andm, must satisfy g=m;<q+l and (g+I)< mz g. Also it is straightforward
to see that an arbitrary Verma basis is proportionadt8x1-m2x2) or we can write

Ui m (0,0, x1,x2) = MR (6,0). (4.22

Now, substituting(4.22) in (3.6) and Fourier transforming over the coordinajgsand y,, the
Casimir operator reduces to the required two dimensional Hamiltddjam,,m,) given in(3.7).

Therefore, the general eigenfunctions of the above Hamiltonian with eigenEzﬁque):%((q

+1)(2g+1+3)+q(g+3)) (for the degeneracy of these eigenvalues see the Appecatixbe written
as

ag g-my
Xﬂ;ll,mz(é’, ¢) = (H Y_(my+ag—i+ 1,m2))( [T x(m+ag,q-i+ 1))

i=1 i=1

q+| m—ag
X ( IT Y.@@+1-i+ 1,q)> (co(@)sin™(H)cod™ () Vcog )sin(2¢)).
i=1

(4.23



012103-8 H. Panahi and M. A. Jafarizadeh J. Math. Phys. 46, 012103 (2005)

(a+l.q)

Iv

(m.r;u)
1 2

(9.91)

FIG. 1. Diagram of seven possible allowed regions of eigenspectrum of Hamiltbifiam, m,) in the (m;,m,) plane for
given values of integer parametegsl, m;, andm, with | =0. Horizontal lines mean application of the lowering operator
Y_ while the vertical line indicates the application of the lowering operxtor

V. GENERALIZED SHAPE INVARIANCE SYMMETRY

In this section we show that the Hamiltonia#j(m;,m,) possesses a new kind of shape
invariance symmetry, we call it generalized shape invariance. Obvious$) SYmmetry of the
Casimir operator before the reduction generates this special shape invariance symmetry. Using this
symmetry we will obtain below the eigenspectrum of Hamiltoniitm;,m,), that is the eigen-
functionsxﬁ;'l’mz(a,cp) corresponding to eigenvallgq,|) by consecutive application of lowering
operators over the state withy=q+| and m,=q. We will also obtain its degeneracy for given
values of(g+I,q), where it is the same as the one that can be obtained by using the inequalities
(4.2) corresponding to Figs. 1 and 2.

2 @
T
g-lll-m -a
1 3
111

il
VII

a
(m ,m) 3
1 2

VI

a-g+lI)

FIG. 2. Diagram of seven possible allowed regions of eigenspectrum of Hamiltblfian, m,) in the (m;,m,) plane for
given values of integer parametegsl, m;, andm, with | <0. Horizontal lines mean application of the lowering operator
Y_ while the vertical line indicates the application of the lowering opertor
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First we write the Hamiltoniar,(m;,m,) operator in terms of the Fourier transformed op-
erators given in4.18—4.21),

1
H(my,my) = §[R+(m1 - 1,m, - DR.(my,my) + R.(my + 1,m, + DR, (my,my)

+ Y, (my = 1,mp) Y_(my,my) + Y_(my + 1,mp) Yo (my, my) + X, (my,m, — 1)X_(my, my)

(my + my)? . 3(my - m, - 31)?

+ X_(my,my + )X, (mg,my) ] + 2 4 (5.9
Now, using the following commutation relations,
[Rs+V3Rg Ya]= 22Y,, [Rs—V3RgY.l= T VY,,
[Rs— V3Rg, Xs]= 2 2X,, [Rs+13RgX.]= F X., (5.2)

we can obtain the following relations:

(Rg(my = 1,my) + \’ERs(ml +1,my)) Y. (my,mp) = Y. (Mg, my) (Rg(my, my)
+ \"ERs(mlamz)) = £ 2Y.(my,my),

(Rg(my = 1,my) — \ERS(ml +1,my)) Y. (my,mp) = Y. (my,my) (Rg(my, my)

- \’ERs(ml,mz)) = F Yi(m,my),

(Ra(My, My + 1) = y3Rg(My, My £ 1)) X, (My, My) = X, (Mg, My) (Re(My, my)
— 3Rg(My,my)) = % 2X,(my,my),

(Rs(My, My £ 1) + 3Rg(My, My & 1)) X, (My, My) — X, (My, my) (Re(My, my)
+13Rg(My,my)) = T X, (my,my). (5.3

The above relations imply that the Hamiltonigii(m,;,m,) possesses shape invariance symmetry.
Since, through the left action of the operatdfgm;,m,) and X.(m;,m,) on both sides of the
following eigenvalue equations,

Hi(My, M) xih, m (6, 0) = E(@ 1) xXfht m,(6,9),

— I
(RB(mlimZ) + V’3R8(mllm2)))(g”\ll,m2(0! QD) = <2m1 - m2 - 5>X?ﬁi,m2(0! (P)! (54)

I
(Rg(my,my) — \"ERa(mLmz))Xg%ll,nb(@, ®)= (‘ my +2m, + §>X?ﬁll,m2(9, ®),
we get

Xihve1m(6,9) = YoMy, mp) ! 1 (6,¢), (5.5

Xt e (6,0) = Xe(My, M) xih 1 (6,0). (5.6)

Therefore, the operatois,(m;,m,) shift the parametem,; by one unit or they push the unrenor-
malized eigenfunctions horizontally in Figs. 1 and 2, while the operaXq(sy,m,) shift the
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parametem, by one unit or they push the eigenfunctions vertically in Figs. 1 and 2. Obviously the
eigenfunctions vanish in the forbidden regions of Figs. 1 and 2. Using the reléignand(5.6),
we obtain the following relations:

Yy = 1,mp) Y-(My, mo) xih 1, (6,0) = Xt 1, (6,0),

Y—(m11 mZ)Y+(ml - 11m2)X?ﬁi—1’m2( 01 (P) = X?ﬁi—l]mz( 01 (P) (57)

and

XMy, = DX (Mg, M) X 1 (6,0) = X 1, (6,0),

x—(m11 m2)X+(mlv m2 - l)Xﬂ"]Lmz—]_( 61 (P) = Xﬂ:‘.!l’mZ_l( 61 (P) ’ (58)

which indicate that the Hamiltoniad,(m;,m,) possesses the shape invariance symmetry. Actually
the first pair of equations given ifb.7) imply the horizontal shape invariance while the second
pair of equations given i1g5.8) imply the vertical shape invariance symmetry in Figs. 1 and 2,
respectively. Therefore, using this symmetry we can obtain the eigenfunctions of the isospectral
HamiltoniansH,(my, m,) with the eigenvalu&(q,|) simply by applying the lowering operatoxs

andY_ over the highest Weightg’lhq(ﬁ,qa), namely we obtain all the eigenstates for the values of
parametersn; andm, given in the allowed region of Figs. 1 and 2, such that these eigenfunctions
vanish for the values of the parameters corresponding to the forbidden region. Also one can show
that in this way we obtain exactly the same eigenspectrum that we have obtained in Sec. IV by
using the Verma basis.

Therefore, by consecutive application of lowering operators over highest eigenweight
)(g‘lhq(ﬂ,cp), we can obtain an arbitrary eigenst@tﬂg’lymz(a,go), where the existence of different
ordering of lowering operators or the different paths indicate the degeneracy of the Hamiltonian
H,(m;,m,). It is straightforward to show that by this method we get exactly the eigenspectrum of
the preceding section. For an illustration we explain below the real representatiogwitland
=0 in detail. Using the relatio.23), we get the following expression for highest eigenweight of
(1,1) representation:

X136, ¢) = 2 sirf(6)cog 6)cos @) Vcog H)sin(2¢), (5.9
then using(5.5) we get

X X0,¢) = Y_(1,)x+%6,¢) = - sirf(6)sin(2¢)cod B)sin(2¢). (5.10

Now, we cannot lower the above eigenstate by acting the opeYaton it, since the function
Xifl(ﬁ,cp) corresponds to the values of parametgns=—1, m,=1) which is not allowed forg
=1 andl=0. Therefore in order to get lower eigenstates we must act out the opXradarit, that
is, we have

X0.0(60: ) = X_(0,)xg3(6,0) = 2 sir’()cog 2¢) Vcog O)sin(2¢). (5.11)

On the other hand, if we act out the lowering operatoon the highest eigenstate, we will obtain

xX1'0(0,0) = X(1,Dx11(6,¢) = - 2 sirf(6)cog H)sin(¢) ycog O)sin(2¢), (5.12

where its further action will kill it, since the values of paramet@ng=1, m,=-1) are not allowed,
hence we cannot have the eigenstate corresponding to these values of parameters. Similarly the
action of Y_ will shift X};8(6,<p) state to(m;=0, m,=0) or zero weight eigenstate,
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Xo.00,0) = Y_(1,0x1 38, ¢) = 2(COSH() — sirP(¢)sir?(6))sin(6) Vcog O)sin(2¢).  (5.13

We see that zero weight is degenerate but other eigenvalues are nondegenerate which is in agree-
ment with the results of the preceding section. With the same procedure we can obtain the
remaining part of the spectrum, that is we have

X52%4(6,9) = X(0,0x3(6,0) = - 2 sin2¢)sin’(9) Veog H)sin2¢),

X220 6,0) = Y_(0,0 506, ¢) = 2 sin()sin(26)sin( 6)\'cog 6)sin(2¢), (5.14
and

Xe-1(0,0) = Y_(0,~ Dxg:24(6,¢) = X_(= 1,0x2 (6, ¢) = 2 sin20)cod ¢)sin(6) \cod O)sin(2¢) .
(5.15

We should remind that all eigenfunctions associated with the forbidden regiom, gf,) plane
vanish. For example, the action of the operatét¥_ and Y2X2Y_ on highest eigenstate leads to
vanishing funCtiOHS((l)’_z(ﬂ,go) and)(fzy_l(ﬁ,(p), respectively. Also one can show that by acting the
operatorsX_Y_X_Y_ andY_X_Y_X_ on the highest eigenstate we obtain eigenstates which are both
proportional to Verma basg!’ (6, ¢)=Y_X2Y_x1')(6, ¢).

VI. THREE DIMENSIONAL HAMILTONIAN WITH ORDINARY SHAPE INVARIANCE
SYMMETRY

Here in this section we first make Inonu—-Wigner contraétiover the generators of &) Lie
algebra given in2.3)<2.6), simply by making the change of coordinater/R and relating the
new contracted generators to the old onesRiy(1/R)R., R§=Rs, X{=X,, Yi=(1/R)Y,, R§
=Rg. Then in the limit ofR— <0 the set of sy3) bases reduces to

1, g sing) d i a}
¢ =~efllaxd| Teogg)— + —+ — 1, 6.1
Re 2 [+ S(QD)()?r r Jde rcodo)dx ©.1
1. d co d i d d d
Yi== +'X1|:isin((p)—i S((p)—+ - (——+—+—>}, (6.2
=2 or r de rsinfe)\ dn dx1 Ix
R g 4 : J
X;=—-e"'"el T ——icotlg)| ——— | +2i cot(2¢)— |, (6.3
2 e an  Ix1 X2
. o
[ 0 J iv3(2 9 J J
gl 2 1) metB(zn 1 ) 0
2\dx1 X2 2 \3dn dx1 Ix2
with the following commutation relations:
[REREI= +RE, [REYEI= +3VE, [REXC]= 35X,
C \“JE C C —_ \‘J”_ C
[RSIYi] =% ?Yiv [Rcvxi] =+ ?Xtv (65)

[REXS]= 7Y, [XSXC]=RE- 3RS, [YLXS]= + R

Therefore, the generatoRS, RS, Y, andYS commute with each other. Also the quadratic Casimir
operator(2.8) reduces to
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P 1 & 1 F 34 2 coi(2<p) d 1
—t St +— — +
a2 r2o¢®  r?sinf(e) an? rar | r2 r? sirf(e)
g 1 P & & 02
-2 2

C —

—+ +2 , (6.6
axi® co(@)dx,® Ixadxa  Imdxy  Imdxz

where after the similarity transformatichF:f‘l(r,(p)CCf(r,go) with f(r,¢)=1/r cog¢) we get

- 1m
- 5 (RERE + RORC + Y°Y¢ + YY©)
=+ iirZE + 1 ( )_ 1 &_2 + 1
T r2a o rZsin(e) ago e r?sirf(¢) a7 4r? cos(¢)

2
1 (52 1 & a J 02) 6.7

+ - —+ —+ - - ,
rPsif(e)\oxi coS(e)dxs dxwxa  Imixy  Imdxe
whereYc Y$ andRE RE+[1/4r coq ¢)]ef™1™x2. Now, by Fourier transforming over the coordi-
nates y; and x> with the kernelé(™wx1™x2) and the similarity transformation with function

eM-™)7 the above Casimir operator reduces to

2_1
H(mz):—[%irzﬁ 1 9 1 # (m

o o r sin(¢) de n((p)_ r2 sin2(<p)ﬁ_m} (6.9

Also after Inonu—Wigner contraction together with the Fourier transformation, the Casimir eigen-
value equatior{C/R?) ¢=[E(q,|)/R?]s reduces tdH(m,) zpf]flzkzzpf]fl provided that for finitd, we

let g— o0, R— 2 such thatg/R=finite=k, therefore, we have a hierarchy of isospectral Hamilto-
nians labeled by the paramet®s and one can show that this isospectral symmetry comes from
the shape invariance symmetry of these Hamiltonians. To see this we first write the Hamiltonian
H(my) in terms of Fourier transformed and similarity transformed lowering and rising operators,

1 9 sinlg) 9 2mp-1
Ai(mz)—2<+cos(‘°)ari r (9¢+2rcos(qo)>'

Y9 code)d i 9 1 )
- Z(Sm((’p)&r " r de rsin(e) &17+ rsin(e)/’ 6.9
TSN COR i)
B-= 2( Sm((P)ar r o de rsin(e)an)’
in the following form:
H(my) = Au(mp)A_(myp) +B,B_, (6.10
H(m, = 1) = A (my)A(myp) + B,B_. (6.11
Now, multiplying the eigenvalue equation
H(my) iy, = (AL(M)A(my) + B.B.) ) (6.12

from the left-hand side by the operatar(m,) and using the fact thak,(m,) commute withB.,
we obtain
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H(mp = D(A(Mp)gf) = KA(A(My)) i), (6.13

therefore,k(mz)zpfﬁ; is the eigenfunction oH(m,-1) with the same eigenvalu?, hence the
operatorA_(m,) lowers the indexm, by one unit. The similarity one shows that(m,) raisesm,

by one unit, respectively. Therefore, the Hamiltontdfm,) possesses ordinary shape invariance
symmetry with respect to parametas.

For half-integer value of the parameter, we can obtain the continuous eigenspectrum of
these Hamiltoniangsince these Hamiltonians are positive defipi@mply by acting these low-
ering and raising operators over the eigenfunction of the free particle as follows.

Since form,=3 the HamiltonianH(m,) reduces toH(3)=-V?2 with the eigenvalueE=k?

and eigenfunctio g'j)zjé“ and for HamiltonianH(n2+%) with non-negative integen,, we

haveH(n,+ )w(k)—kzz/x(k) with

k)‘HA+<J+ ) fex (6.14

VII. CONCLUSION

Here in this work we have generalized the ordinary exactly solvable shape invariance Hamil-
tonians to Hamiltonians with non-Abelian type of shape invariance symmetry and an ordinary
shape invariance one. Again it is shown that the new kind of shape invariance symmetry has its
origin in group theory or better to say, the exact solvability of Hamiltonians are related in some
way to Lie algebras or Lie groups.

APPENDIX: DEGENERACY OF HAMILTONIAN H,(my, m5)

In order to determine the degeneracy of Hamiltorithtm,,m,) for a given value of integer
parametersn; andm,, we should determine the range of variation of integgby imposing the
inequalities(4.2).

For1=0 and O=m,<q we have the following three different regions for integer parameter

0] -m<azsg-m, Mm-m=<g, -q<=m<0, degeneracyg—m,+m;+1,
Iy O=az=sg-m,, O0=m<Il+m,, degeneracyg-m,+1,

Iy O=az=qg+l-my, lI+my=my=<qg+l, degeneracyg+l-m;+1,

while for —q—I =m,< 0 there are another four different regions foy,

V) -m=saz<q, -g=m<Il+m,<0, -g-I=m,<0, degeneracyg+m+1,

V) —ml$a3\q+l m;+m,, +m,=m <0, -g-Is=m,<-I, degeneracyg+l+m,+1,
VI) O=az=q, Osm<Il+m, -I=<m,<0, degeneracyg+1,

VIl) O=az=qg+l-m+m,, I=sm-my=<qg+l, O0=m=<qg+l, -l-q=m,<0, degeneracy

=gq+l-m+my+1.

For <0 and O=m,=<q we have the following four different regions for integer parameter
my:

Hh -m=sazgsg-m,, [l|[<m,-m<g, —gs=m <0, Osmy,=<q, degeneracyg-m,+m
+1,

() -m=ag=qg-|l|-m;, m-|l|l=m<0, O0=m,<|l|, degeneracyg-|l|+1,

() Osagsqg-m,, Osm<=my—|l|, |[l|[sm,<gq, degeneracyg-—m,+1,

(IV) Osag=qg-|l|l-m;, Osmy-|l|[sm=<qg-|l|, Osm,=<gq, degeneracyg—-|l|-m+1,

while for —q+|l|<m, <0 there are another three different regions gy

(V) -mpsagsg, —-qs=m<m,-|l|, degeneracyg+m+1,

VI) -mysag=g-|l[-m+m,, m,—|l|<m; <0, degeneracyg—|l|+m,+1,

VIl) Osag=qg-|l|l-m+m,, m-my<g-|l|, O=sm<qg-|l|, degeneracyg-|l|-m+m,

+1.



012103-14 H. Panahi and M. A. Jafarizadeh J. Math. Phys. 46, 012103 (2005)

For given values of the integer parametgrs, m;, andm, the eigenspectrum of Hamiltonian
H,(m;,m,) exists in the above seven regions of thg,m,) plane(see Fig. 1 fol =0 and Fig. 2
for 1 <0). Therefore for given values oh; andm, the eigenspectrum can be obtained simply by
consecutive application of lowering operators over the highest eigenweight according to the paths
shown in Figs. 1 and 2.
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We consider group-covariant positive operator valued meaqi@¥Ms) on a

finite dimensional quantum system. Following Neumark’s theorem a POVM can be
implemented by an orthogonal measurement on a larger system. Accordingly, our
goal is to find a quantum circuit implementation of a given group-covariant POVM
which uses the symmetry of the POVM. Based on representation theory of the
symmetry group we develop a general approach for the implementation of group-
covariant POVMs which consist of rank-one operators. The construction relies on a
method to decompose matrices that intertwine two representations of a finite group.
We give several examples for which the resulting quantum circuits are efficient. In
particular, we obtain efficient quantum circuits for a class of POVMs generated by
Weyl-Heisenberg groups. These circuits allow to implement an approximative si-
multaneous measurement of the position and crystal momentum of a particle mov-
ing on a cyclic chain. €005 American Institute of Physics.
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I. INTRODUCTION

General measurements of quantum systems are described by positive operator-valued mea-
sures(POVMs).1? For several optimality criteria the use of POVMs can be advantageous as
compared to projector valued measurements. This is true, e.g., for the mean square error, the
minimum probability of errof, and the mutual informatioh.POVMs are more flexible than
orthogonal von Neumann measurements and can consist of finite as well as of an infinite number
of elements. An example for the latter is given in Ref. 5 where a POVM for measuring the spin
direction is proposed. Here we restrict our attention to the finite case where a POVM is described
by a set of positive operators which sum up to the identity. Such a POVM is called group-
covariant if the set is invariant under the action of a group. The example of POVMs for the
Weyl-Heisenberg groups as well as an example given in Ref. 5 show that POVMs are needed to
describe phenomenologically the mesoscopic scale of quantum systems. Thep@ilmxima-
tively simultaneous measurements of quantum observables which are actually incompatible. For
instance, the classical phase space of a particle can be approximatively reproduced by simulta-
neous measurements of momentum and position. Descriptions of quantum particles which have
strong analogy to the classical phase space are helpful to understand the relations between the
classical and the quantum wofld\Iso for several other tasks in guantum information processing
the implementation of POVMs is of interest

3Electronic mail: decker@ira.uka.de
PElectronic mail: janzing@ira.uka.de
9Electronic mail: mroetteler@iqc.ca

0022-2488/2005/46(1)/012104/18/$22.50 46, 012104-1 © 2005 American Institute of Physics


http://dx.doi.org/10.1063/1.1827924
http://dx.doi.org/10.1063/1.1827924

012104-2 Decker, Janzing, and Roétteler J. Math. Phys. 46, 012104 (2005)

Neumark’s theoref?* states that in principle every POVM can be implemented by an or-
thogonal measurement of the joint system consisting of the system and an ancilla system. How-
ever, the orthogonal measurement required by this construction may not be a “natural” observable
of the joint system. One may need an additional unitary transform to obtain a reduction to a more
natural observable which henceforth will be called the measurement in the computational basis of
the quantum system.

Therefore, the question arises how to actually implement a POVM in terms of a quantum
circuit which itself is composed of a sequence of elementary quantum‘g&edar, only little is
known about the implementation of POVMs even in quantum systems with a small number of
dimensions. While some rather specific single-qubit measurements have been Sttrdftennt
much is known about the general problem of how to implement a POVM by a unitary transform
on the quantum register of a possibly larger space followed by an orthogonal measurement in the
computational basis.

When studying quantum circuits for families of POVMs questions about the complexity of the
required unitary transforms arise. In some cases we can exploit the fact that they admit some
additional symmetry. This leads to the study of group-covariant POVMs which has been studied
extensively in the literaturé>®’As a recent example we mention the construction of symmetric
informationally complete POVMs by means of suitable finite symmetry grafﬁps.

The main contribution of this paper is a general method which computes an embedding of
group-covariant POVMs into orthogonal measurements on a larger Hilbert space. A particular
feature of the computed embedding is that it uses the symmetry. This in turn allows to apply
known techniques for decomposing matrices with symmetry to the unitary matrices obtained by
this embedding. For several cases this leads to familiefficfentquantum circuits implementing
the given POVMs.

Outline: In Sec. Il we briefly recall the definition of POVMs. In Sec. lll we consider the
decomposition of matrices that have a symmetry with respect to a group. This type of decompo-
sition is a basic tool for our constructions. We also define group-covariance of POVMs with
respect to a symmetry group and a group representation. Furthermore, we explain how POVMs
with this group covariance are related to so-called monomial representations of the symmetry
group. In Sec. IV we explain the general scheme for the construction of a unitary transform that
implements a group-covariant POVM. The basis for this construction is the analysis of the inter-
twining space between the group representation that is given by the group covariance of the
POVM and the monomial representation. This is the starting point for methods using fast quantum
Fourier transforms as described in Sec. V. Finally, in Sec. VI we give several examples of imple-
mentations of group-covariant POVMs.

Notations: We denote the field of complex numbers by The group of invertiblen X n
matrices is denoted by GIC) and the subgroup consisting of the unitary n matrices is denoted
by U(n). We denote the identity matrix i¥(n) by 1,. If not denoted otherwise all matrices are
matrices over the complex numbers. The cyclic group of ondsrdenoted by/,. Representations
are denoted by small greek letters, e.q.j), etc. By abuse of notation we also denote the trivial
representation of dimensian(i.e., dimensiom) by 1,. The direct sum of matrices and represen-
tations is denoted byA® B and ¢ @ ¢ and the tensor product is denoted A®B and ¢ ® ¢,
respectively. We make frequent use of the Pauli matrices

0 aelt ) el 2)

A diagonal matrix with diagonal entries,, ... ,\, is abbreviated by didg, ... ,\,). We denote
the symmetric group on symbols byS,. To each permutationr € S, naturally corresponds the
permutation matrix;|o(i))(i|. By abuse of notation we identify with the corresponding permu-
tation matrix. We often use the permutation mat&y, which corresponds to then-cycle
(1,2,... m) and the matriX,,=diag1,wn, ... o™ ) which contains the eigenvalues &f, The
basis states of an-qubit system correspond to binary strings of lengtfQuantum circuits are
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written from the left to the right, and the qubits are arranged such that the most significant qubit
(characterizing the left-most symbol of a binary styjimgon top. Throughout the paper a matrix
entry “.” stands for zero.

II. POVMs AND ORTHOGONAL MEASUREMENTS

A POVM for a quantum system with Hilbert spac¥ is a setP={A,,... A} C 9 of
non-negative operators, whexgA,=1,. For a more general definition for POVMs with an infinite
number of operators we refer to Ref. 19. For example, the set of matrices

1(1 1\1(1 w)1(1 & o
P2:_ 1_2 ' QC,
3\1 1/ 3\ew” 1/ 3\w 1

where w=exp27i/3) is a third root of unity, defines a POVM on a system with corresponding
Hilbert spaceC?. Suppose that the state of the system is described by the density matrix
e C9%d Then for a general POVM the probabilipy for the resultk is given byp,=tr(pAy). An
orthogonalmeasurement is a POVM with mutually orthogonal operafgsi. e., we have that
AkA|:A|Ak:0 for k#1.

In the following we restrict ourselves to rank-one operatdis | ¥, ){(¥,/. Note that the
POVM vectors|¥,) need not be normalized and that the restriction to operators of rank one is for
some applications justified by Davies’ theoréhit states that we can always find a POVM with
rank-one operators that maximizes the mutual information. The exaRylerhich consists of
three rank-one operators, can be writterPas {| W (W 4|,| W (W, | P} W4}, where

v)y=— , W)y =— , and|¥y)=—
o= 2(}) ma=t( L) anaep= (2

are the corresponding POVM vectors 3. Neumark’s theoref states that it is possible to
implement a POVM by reducing it to an orthogonal measurement on a larger system. We briefly
recall this construction. LeP={A}={|¥ (¥, |} be a POVM withn operators that acts on the
Hilbert spaceCd. For n>d the vectors|W,) cannot be mutually orthogonal. Consequently, we
must extend the system by at leastd dimensions in order to define an orthogonal measurement
with n different measurement outcomes. We want to implement an orthogonal measufment
:{Kk}:{|@k><§'k|} on the system witm dimensions such tha® corresponds to the POVN on
the subsystem witlkd dimensions, i.e.pk:tr(pAk):tr(f)Kk). Here we have that the embedding of
the state into the larger systemisp® 0,_q e C"™" where Q_q denotes the zero matrix of size
n-d.

We write the POVM vector§¥,) as columns of the matriM=(|¥,)---|¥,)) € C". In the
following we refer toM as the defining matrix for the POVNR. Now, the vectoré,qfk):hlfk)
®|®,) corresponding td\=|W,)(W,| € C™" are the columns of the matrix

(W e [y
M <|<I>1> SR

= ) e Un).
Note thatM can be an arbitrary unitary matrix which contaMsas upper part of sizéx n. Since

P is a POVM we havéVM =3, |¥ X ¥,/ =S, A=1,, i. €., finding a suitablé/ is always possible.
For example, in case d&®, we obtain the defining matrix

1(111

— ) c C2X3
V3

1 o o

and one possible choice fod is to add the row given bf(l/\@)(l,w,wz). Hence the rank-one
projectors corresponding to the orthogonal measurerieate
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1 ! 1 ! 1 !
|‘T’1>:? 1], |E’2>:_r o |, and|{I"3>:? (0]
V3 V3 V3l 5

1 w w

The probability distributionbk:tr(ﬁﬂk) of the constructed orthogonal measurement equals the
distribution p, of the original POVM since

[Py [ Dy
[ DI [ DDy

The embedding into a larger system can be realized by using an ancilla register of a quantum
computer. It consists dfqubits such that'2=n-d. They are initially in the stat@®- - -0). Then the
spaceCd® |0---0) is the subspace where the POVM acts on @fhe (C)®' is the extension. The
density operatop acts on am-dimensional subspace of the joint system consisting of the original
system and the ancilla register. In the following we will assume that also the system($piace
embedded into the state space of some qubits.

As explained above, we can implement the POVM with corresponding mdtiy applying

the unitary transfornM to the initial staté of the joint system followed by a measurement in the
computational basis. Note that for the special case where the colunvhsua already orthogonal

we have thaM =M. In this case by implementing the mati&' followed by a measurement in the
computational basis we can perfectly distinguish between the columiis of

In principle, the construction of an appropriate matvxis simple since we just have to find
mutually orthogonal rows that lead to a unitary matrix. Howekegubits allow POVMs withn
=2k operators. Hence the size bf is exponential ink. The complexity to implement a unitary
matrix onk qubits can be upper bound8dy O(4¥) and a generic element 6(2%) will indeed
require an exponential number of elementary transfo@ng., one- and two-qubit gajeS here-
fore we are interested in the construction of a maixhat can be implemented efficiently, if such
a construction exists at all. While finding efficient factorizations is a hard problem in general, the
situation becomes easier in some cases where we are given the additional structure of a group-
covariant POVM. In the following sections we will give a definition of group covariance and the
related notion of symmetry. Later, we exploit the symmetry of the maitiand give several
examples of POVMs that have efficient quantum circuit implementations.

Pi=tr(pA) = tr((P ® On—d)( )) = tr(pAy) = P

IIl. GROUP-COVARIANT POVMs AND MATRICES WITH SYMMETRY

In the following we give a precise mathematical definition of the notiorsyohmetryof a
matrix M e C™", Later we define group covariance of a POVM and show that the group covari-
ance in a natural way leads to matrices with symmetry. For the necessary background on finite
groups and representations we refer to standard textbooks such as Refs. 21 and 22.

We start with a finite grous and a pair(¢, ) of matrix representations d& which are
compatible with the size dfl, i.e., ¢: G— GL,(C) and¢: G— GL,(C). Following Refs. 23 and 24
we call the triple(G, ¢, ) a symmetry ofM if the identity ¢(g)M =My(g) holds for allg e G.
Sometimes we abbreviate this by using the shorthand notafiba M. Note that ifM is not a
square matrix the representatiopsand ¢ have different dimensions.

To give an example we leb=exp27i/3) and leta, B, ye C. Then for allj €{0,1,2 we
have that

1 - Nla o a « a co 1)
o - ||B Bo Bo?|=|B Bw Bo®||1
w? 0% ywz Yo 0% 'yw2 0%0) -1

Hence we obtain a symmetry which is given by the cyclic gragp{0, 1,2 together with the two
representations, o:Z;—U(3) given by ¢(1)=diag1,w,w?) ando(1)=(1,3,2.
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Note that given two representatiogs ¢ of a groupG the set of all matrice! which fulfill
o(gIM=Myi(g) for all g G is a vector space. It turns out that the matrices in this vector space
have a special form. Hence we explore its structure in more detail in the following.

Definition 1 (intertwining space): Let G be a group and gty be representations of G of
dimensions n and jmrespectively. Then

Int(¢, ¥) := {M:p(g)M = My(g), for all g € G}

with M e C"™™ is called the intertwining space af and .

In the following we denote by, ...,¢, @ complete list of pairwise inequivalent irreducible
representations db. Recall that for any representation of a finite group it is always possible to
find a base change such that the corresponding representation is a direct sum of irreducible
representation%z. For representations which are completely decomposed into a direct sum of
irreducibles the structure of the intertwining space is known. This is the content of the following
theorem which follows directly from Schur’s lemnisee Ref. 26, Sec. 29

Theorem 2: Let G be a finite group ang=a;,(1, ® ¢;) and y=aL,(1y, ® ¢;) two repre-
sentations of G which have been completely decomposed into pairwise inequivalent representa-
tions ¢; with i=1, ... k. Then the intertwining space @f and ¢ has the following structure:

Int(e, ) = (CVM @ Lgeqp) & -+ & (CWT™HD Ly,

A matrix A is calledblock permutedf there are permutation matricd® and Q such that
PAQ=B,®--- ®B,, whereB,, ... B, are (rectangular matrices. For allnmke N there exist
permutation matrice®,, ,,x and Q mx such that for allAe C™™ we haveP, , (A® 1,)Qp mk
=1, ® A. Hence we have shown that the elements of the intertwining space of completely reduced
representations are block permuted.

We continue with an easy observation which turns out to be essential for the approach of
extending the symmetry of a given group-covariant POVM to a measurement on a larger space.
Suppose thatl e Int(¢, /) and that the matriced andW decompose the representatignand ¢
into the direct sums, i.eUeUT=¢;® - @ ¢, and VyV'=y, @ --- @ ¢, Then we can rewrite
oM =Mo as

U1 @ -+ @ @)UM =MW (¢ @ -+ & i) W.

Multiplying this from the left byU and from the right by shows thatC:= UMW is an element

of the intertwining space @ -+ & ¢, 1 & -+ & ¢, of two completely reduced representa-
tions. In particular, we can apply Theorem 2 to determine the structuf@ &fi particular we
obtain thatC is block permuted and the size of the blocks depend on the multiplicities and
dimensions of the irreducible representations containeg amd .

Matrices with symmetry arise naturally in context of group-covariant POVMs. We first give a
definition of these POVMs and then establish a connection between the notions of group covari-
ance and symmetry.

Definition 3 (group-covariant POVMs): A POVM=RA,, ... A} C €99 with A # A for k
# | is group-covariant with respect to the group G if there exists a projective unitary representa-
tion ¢:G—U(d) with ¢(g)Ap(g)T e P for all ge G and all k

Note that a group-covariant POVM is also group covariant for all subgrélgss and the
restriction of the representatiap to H. As a special case, the choice of the trivial subgréup
={1} means that we do not use the symmetry of the POVM at all.

A minor complication arises due to the fact that while the notion of symmetry of matrices
relies on ordinary, i.e., nonprojective representations, the definition of group-covariant POVMs
relies on projective representations. Therefore, we need a construction which allows to transform
the projective representation of the symmetry group of a group-covariant POVM into a honprojec-
tive representation. This connection is established using so-cedletlal extensionsvhich is a
method going back to Schur. We briefly recall this construcigae also Ref. 22, Lemn{a1.16].

Let ¢:G—GLy4(C) be a projective representation of the groGp More precisely, we have
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@(gh) = ygne(9) ¢(h) for g,h e G, whereyy, is a factor system. Léti=(y,n:9,h € G) be the group
generated by they,. We consider the grouf consisting of the elementg,h) with ge G and

he H. The multiplication of two elementgy,h) and (g’,h’) of G is defined by(g,h)(g’,h’)
=(99', 74 hh’). Then the magp((g,h))=he(g) is a representation witlk((g,1))=¢(g), i.e., the

representatiorp equalse on the element$g,1) and the groupé is a central extension of the
group G.

In the following we always assumg to be a nonprojective representation of the symmetry
groupG by this construction. This is justified since the set of POVM operators does not change by

switching from G to a central extensio® because scalar multiples of the identity transform
trivially under conjugation.

We now analyze the structure of the mathik corresponding to the group-covariant POVM
P={|¥ ¥/} with rank-one operators. Note that the phases of the vefigiscan be chosen
arbitrarily without changing the POVM. Leb: G—(d) be the representation corresponding to
the symmetry ofP. We then have the equation

PV (@' = [V XY gl

where 7:G— S, denotes a permutation representation of the gr@upindeed, the equation
IV XY @i =Y g gkl iMplies [W (V| =W, )(¥| by conjugation withe(g)" since A,

# A for j # k. Therefore, the mapr(g) is injective for allg e G. Since an injective map on a finite
set is also surjective the mag(g) defines a permutation.

Next, we consider the action @f on the columns of the matriM. As stated above the
columns|¥,) of M can have arbitrary phase factors. The actior@) on the columns oM can
be described by the equatigiig)|W,)=€#99|W ) whereg(g,k) depends ok, g and the fixed
phase factors of the vectofd,). We identify the columng¥,) with a basish, of the vector space
C"in order to construct a representation that describes the actigronfthe columns oM. With
this identification the action of(g) corresponds to the map—€#%¥b_ .

By writing down the matrix corresponding to this map, we see that in each row and each

column there is precisely one entry different from zero. Matrices having a structure like this are
called monomial matrices (Ref. 26, Sec. 48 Whenever the images under a representation
consist entirely of monomial matrices, we denote this with a subscript, i.e., we iig€0).
Now, the two representations and ¢, define the symmetrypM =M ¢, Of the matrixM. The
monomial representatios,,,, acts on the columns d¥l. For eachg e G it permutes the columns
of M and multiplies each column with a phase factor.

Example 4:As an example in two dimensions we consider the following POVM:

o <|a|2 aﬁ><|a|2 -ag) <|ﬂ|2 Eﬂ>(|ﬁ|2 —Eﬁ) C e
ap 182)"\~ap 162 ) \ap |/ \-ap lof /] ="

with a, 8 € C and|a|?+|8/?=1/2.ThenP is covariant with respect td, X Z,. The corresponding
projective representation: 7, X 7,—U(2) is defined by the equations

©0,0=1, ¢0,)=0, ¢1,0=0y ¢(1,1)=0,0,

where(0,0), (0,1), (1,0), and(1,1) denote the elements of the gropX 7.
For this projective representation @ X7, a simple computation shows that the central

extensionG of 7, X 7Z, is isomorphic to the dihedral group with eight elements. In the following
it is sufficient to consider the definition of the representation on the elerq@@nts 1) and((1,0),1)

since these elements generéle{(g,h):g € 75X 75,h e {x1}}. We can choose
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M:(a « P B)ecm
B -8B a -«

or a matrix with the same columisp to an arbitrary phase factor for each colynirhis leads to
a symmetry group given by the monomial representation

1 - . .1

1 . . .
¢mor((0,1),1) = ] and ¢mer((1,0),1) = 1
1 - - =1

For a different choice of phase factors we obtain another represenigtignThe modified pair of
representation®, ¢mon, also defines a symmetry of.

An important special case of group-covariant POVMsgmip-generated®OVMs which we
describe next. LeG be a group and>: G— (%9 an (ordinary) unitary representation. A group-
generated POVM is described by the POVM vecto(g)|¥) for ge G and an initial vector
|¥) e C4. The corresponding operators of the POVM are givenAgy o(g)|¥)(¥|e(g)t for g
e G. In other words, all POVM vectors are obtained by the initial ve¢i#or under the operation
of the groupG, i.e., they form an orbit. Obviously, a group-generated POVM is a group-covariant
POVM with a single orbit under the action of the group. With this construction, the phase factors
of the POVM vectorsp(g)|¥) are fixed by the phase factor of the initial vectd). The phase
factorse #9¥ of the monomial representatiam,, corresponding ta equal 1. As a consequence,
the monomial representatiapy,,, equals the regular representation®fwith respect to a fixed
order of the elements d&.

Note that the operatorgp(g)|¥X¥|e(g)T} in general do not define a POVM for arbitrary
representationg and initial vectord¥). However, if acts irreducibly one hagfter appropriate
normalization for every vectof¥) the equatiorEy.ce(9)| W)} ¥|e(g)"=1,.

IV. CONSTRUCTION OF THE ORTHOGONAL MEASUREMENT

Following the preceding section we can arrange the vectors which correspond to the elements
of a POVM with rank-one projectors into the columns of a malixWe have seen that in case
of a group-covariant POVM the matriM e C9<" always has the symmetyM =M @0, Whereg
is the given representation argl,,, is @ monomial representation. Both representations are rep-
resentations of the symmetry group of the group-covariant POVM. We know that both represen-
tations are equivalent to direct sums of irreducible representations. Hence we can find unitary
matricesU andW such thatUeUT=¢, @ - -+ @ ¢, andWeoW =0, @ - -+ ® o, Where theg, and
the o, denote irreducible representations of the gréupln general, we can write the equation
eM=Mepn as

Ul @ - @ o) UM =MW (g, @ -+ @ o) W.

This is equivalent toC=UMW' e T:=Int(¢;® - ® ¢, 0, ® - - ® o). Conversely, a matrixC
which is contained in this intertwining space and has orthogonal rows défipes an appropriate
normalization a group-covariant POVM with corresponding matkik=UTCW.

For a given matrixM e C9" we now consider the construction of a unitary mathik
e U(n) such thatM containsM as the upper part, i.e., we are looking for a maiixsuch that

o 1)

whereN e C(™9>n_|n addition to this we intend to get the symmetty® ¢')M =M @0, With an
appropriate representatiapl : G—U(n-d). If we succeed in constructing an appropriate repre-

sentatione’ and matrixM then we have the equatian® @':MgomonMT, i.e., the representation
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¢® ¢’ must be equivalent t@,,,, In other words, each irreducible representatiorGois con-
tained the same number of times ¢re ¢’ and in ¢, Furthermore, from the decompositions
Uel, _9e®e)Ute 1 9)=0,0)®  ®0oym andWemoW'=0,@ - -+ @ o, we obtain that

(Ue DMW' € Te= Int(oyy) @ = ® 0y 0, ® **+ @ ayy) T CN. (1)

The permutationr used in Eq(1) is a suitable reordering of the irreducible representations. The

structure of the intertwining spaceis known from Theorem 2 since we can compute the irre-
ducible representations; from ¢pqn

In the following discussion we consider the constructiopb&indM. Our goal is to show that
the construction ofp’ that makesUeUT@® ¢’ equal toWe,, W' up to a permutationr of the
irreducible components is always possible.

Important for the extension dfl to M will be the following theorem which characterizes the
relations of two representations in case there is an intertwiner of maximal possible rank. Recall
that ¢, is a constituent ofy, if and only if there is a base chandé such thatU 1y,(g)U
=yn(9) @ ¢1(9) wherey; is a representation db.

Theorem 5: Let G be a finite group and lef, ¢, be representations of G of dimensions
d,=ded¢,) and d,=ded ), respectivelyLet M e C%1*% be a matrix withy,(g)M =M (g) for
all g e G andrk(M)=ded ;). Thenys is a constituent off,.

Proof: Let M be such thaty;(Q)M=M(g) and lete, ... ,¢ be a complete set of pairwise
inequivalent irreducible representations&fSincey,» are representations of a finite group over
the field of complex numbers we find unitary matriddg/V such thatU(plUT:ea!‘:lmigoi and
WzﬁzWT:eaik:lnigoi, where the multiplicitiesn; andn; are non-negative integers. We must show that
actuallym=n; for alli=1, ... k.

From ;M =My, and the choice ob) andW we obtain(@m ¢;) (UMW) =(UMW"(&n¢),

i.e., we have that MW" e Int(earzlmicpi,@:‘zlni ¢i). By the remarks following Theorem 2 we know
that there are permutation matricesand Q such thatMg:= P(UMV\/*)Q:(ldewl)@Bl)@m

® (1d691¢k> ® B,) where eaclB; e C™*". Multiplication with invertible matrices preserves the prop-
erty thatM and hence alsbl, have full rank[given by de@y,)]. On the other hand, we know that
the rank of a block diagonal matrix is given by the sum of the ranks of the blocks. Hence
rk(Mo)=Eik=1degcpi) -rk(B;) which shows that eacB; must have full rank. Sinc8; is anm, X n,
matrix this in particular implies that, <n;. This shows that/; is a constituent of,.

We now use Eq(1) to construct the matriM for the implementation of a group-covariant
POVM. Having determinedU and W we can compute the matrixC=UMW!
e Int(UeUT, We,,o,W". The multiplicity of each irreducible representation ¢i can be com-

puted. Since the structure of the intertwining spisent(Uq;UT@ @'\ WemoW is known we can

extendC to an arbitrary unitary matriC of the intertwining spaca' . This extension is always
possible since both representatidieU’ @ ¢’ andWep,o W' contain each irreducible representa-
tion the same number of times. The mat@ixdefines some of the rows & SinceM defines a

POVM the rows are mutually orthogonal. Consequently, the matrix componeﬁls:mfrespond—
ing to an irreducible representation can be chosen under the constraint that they are orthogonal.

We now have that for any e /(n-d) the matrixM=(U"@® V")CW vyields a unitary that extends
the matrixM and has the symmetry we wanted to construct.
Hence, we obtain the following algorithm to construct an orthogonal measurement which
realizes the given POVM and preserves the symmetry.
Algorithm 6: Let P={A,, ... A} C C%9 be a POVM. Then the following steps implememt
by a von Neumann measurement on a larger space.

(1) Write the rank-one operatord,=|¥ (¥, of the POVM as columns of the matrik
e Coxn,

(2) Determine an appropriate symmetry group with corresponding represengati®n 14(d).

(3) Compute the monomial representati@f,,: G—u(n).
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(4) Find a matrixU e U/(d) that decomposes into irreducible representations where equivalent
ones are equal.

(5) Find a matrixW e U(n) that decomposesg,,, into irreducible representations where equiva-
lent ones are equal.

(6) Construct the representatigri such thatUeUTa ¢’ is equal toWep,, W' up to a permuta-
tion 7 of the irreducibles.

(7 Constructaeu(n) that contain€=UMW' e C9%" as upper part and is in the intertwining

spaceT of UpUT® ¢’ and Wepmo W
(8) Choose an arbitrary unitary matrixe U(n-d).

(99 ComputeM=(UTeVH)CWe U(n).

ThenM? implements the POVMP by a von Neumann measurement on a larger space, i.e., for
any statep on the originald-dimensional system we have that=tr(pA,) =(¥\[p|¥\). Here|¥,)

denote the rows dfff andp=p®0,_q4 is the embedding gf to a state of am-dimensional system.
Example 7:We consider the example of the preceding section with the matrix

M:(a « P B>ECZX4
B -8B a -«

and the grous={(g,h):g e Z, X 7Z,,h e {1}} which is isomorphic to the dihedral group of order
eight. The representation: G—4(2) is given by ¢((0,1),1)=0, and ¢((1,0),1)=0,. We have
U=1, andU¢UT=¢ since the representatianis already irreducible. An elementary computation
shows that the corresponding monomial representagigyy is given by

1 - . . 1
i o
W‘)Dmon((oyl)al)w = l i 1 W(Pmon((lao)yl)w = l
-1 1
with the unitary matrix
1 1
W= - " cua
= \JE . . 1 1 S .
1 -1

Therefore, ¢, cOntains the irreducible representatigriwice, i.e., We, W =0 @ ¢.
rWith the matricesM e C2*4, U e 4(2) and Wel(4) as above we find thaC=UMW'
=V2(a B) ®1, e C¥*4, which is an element of the intertwining space

Int( e, WepmonV) = Int(@,0 & ¢).

Since we havéVpn,,W'=¢ @ ¢, we must choose’ = ¢. The intertwining spac& is given by

N1 A2
N1 Ap

Na1 - A
Nap o A

T= Int(e ® @, 0 ® @) = NjelCrC A4,

In our example, the matriC=UMW' defines the first two rows of the matrig e T=Int(¢

D, 0D Q). _
In particular, we have the equationg;=v2a and \;,= \s“E,B. For example, it is possible to

choose,; =128 and\,,=—\2a for @, 8 e C to obtain the unitary matrix
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- B
— e U4,

C=y2 E .

which has the symmetrip® ¢)C=C(¢® ¢). With M=(UTe V)CW and V=1, we compute the
matrix

a a B B

~ B - a -«

M= E E —E _E EZ/{(4)
T @ 5B

that containdV as the upper part and has the symméetsyp go)l\~/l :M¢mon. Note that all unitary
matricesV e U(2) give rise to possible extensiohs.

V. EFFICIENT IMPLEMENTATIONS OF GROUP-COVARIANT POVMs

From the general construction of a von Neumann measurement which realizes a given POVM

using the symmetry of the POVM we now turn to the question of decomposing the ulﬁit'amy)
gates. This can be seen as a first step towards the more general question of how POVMs can be
implemented efficiently on a quantum computer.

When speaking about the efficiency, we mean the cost of implementing the POVM as a von
Neumann measurement on a larger Hilbert space, i.e., the number of elementary gates we need to
actually implement the necessary unitary operation on this bigger space. First note that the dis-

cussed construction dfl has several degrees of freedom:

(i) The matrixC that contain<C as upper part can be chosen arbitrarily. The malrixas to

be a unitary matrix in the intertwining spade

(i)  The matrixV e U(n-d) can be an arbitrary unitary matrix.

(iii)  The order and phase factors of the POVM vectors in the mitroan be chosen arbitrarily.
However, it must be possible to deduce the applied POVM operator from the result of the
orthogonal measurement efficiently.

(iv) The permutationr of the irreducible representations eU'@® ¢’ can be chosen arbi-
trarily.

(v)  The symmetry grouf® can be restricted to subgroupls<s G which might lead to different
realizations of the POVM.

The constructions depend on the symmetry gr@uwe consider for the POVM. Sometimes,
we can obtain simple implementations by restricting the symmetry group to a subgre@ If
we consider a subgroud of G and construct the POVM with respect kb we have several
changes in the construction compared to the construction with the go@m the one hand, the
number of occurrences of the irreducible representations,jjj increase. On the other hand, the
number of inequivalent irreducible representations of the symmetry group decreases. Conse-
quently, the matrices of the intertwining spaces are more complex since there are more irreducible
representations i and ¢.,,o, that are equivalent. As a tradeoff we have that the complexity of the
transformW decreases. The circuits constructed in Ref. 14 show that the restriction of the sym-
metry group to a cyclic subgroup can lead to efficient algorithms in some cases.

Let G be a finite group andle,, ... ¢} a system of representatives for the irreducible repre-
sentations of G. Let the coefficients of these representation be indexed by the list
L'==[(m;i,j),1=sm=k,1<i,j=<ded ¢,)]. Furthermore, let the elements Gfbe indexed by the
list L. Then the matrix
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1/\“‘"@( vded ¢ em( @i mij).g

is unitary and is called a Fourier transfofor DFT for shorj for G (Refs. 27 and 28(with respect
toL andL’).

For several groups it is known how to realize a DFT efficiently on a quantum con‘?ﬁtﬁjer.
In these cases the symmetpy,,, can be decomposed efficiently whenever we have (ihag,on
is a regular representation &f and that(ii) the DFT forG can be computed efficiently. Note that
the computational complexity of this von Neumann measurement depends essentially on the
complexity of implementing DFJ in terms of elementary quantum gates. Hence we obtain sev-
eral families of POVMs for which the monomial representatigg,, can be decomposed effi-
ciently. The complexity of the corresponding POVM then depends on the remaining m&rices
U, andW used in Algorithm 6.

VI. EXAMPLES

In this section we apply the methods discussed in the preceding sections to some examples of
group-covariant POVMs. We exploit the symmetry of group-covariant POVMs with respect to
cyclic groups, dihedral groups, and Weyl-Heisenberg groups in order to construct quantum cir-
cuits for the implementation of these POVMs. Quantum circuits for the implementation of group-
covariant POVMs on a single qubit with respect to the cyclic and dihedral groups are also
discussed in Ref. 14.

A. Cyclic groups

Let Z,={0,1, ... n—1} be a cyclic group witm elements and leb=exp27i/n) be a primi-
tive nth root of unity. On ad-dimensional Hilbert space we consider a group-generated POVM
with respect to the representatiop:7,—U(d) that is defined on the generator hy(1)
=diagl,0,0?, ...,0"™). With an appropriate initial vecta¥) e C the elementsp(g)[¥) for
g € Z, define a POVM. In the following, we only consider the veddp=1/\n(1,...,)" e C4
This vector leads to the POVM with the defining matrix

11 A 1
111 o 0> ... "t
M=~ e ¢, ()
1 wd—l wz(d—l) . w(n—l)(d—l)

The matrixM e C9" has the symmetrgM =M @0, Where emod(1)=(1,2, ... n). The repre-
sentationgon is the regular representation of the cyclic group where the elements are ordered as
[0,1,...(n=1)]. With the Fourier matrix

1,
F,= Tﬁ(wjk)?,kio e Un)
N

we can Writancpmon(l)deiagl ,,w%, ... 0" ). This shows that the Fourier transform decom-
poses the regular representationZgfinto a direct sum of irreducible representations.
According to the preceding discussi¢and notatiop we have thatU=1; and W=F,. As a
consequence we have the equatim:UMWEMFg. More precisely, we haveC=MF;ﬂ
=diag1,1,...,2 e C™N,
We now consider the construction of the matridsand M. The representatiorp:Z,
—U(d) with ¢(1)=diagl,w,®?,...,0% ") contains the irreducible representations> ") for
all  ke{0,...d-1}. The representation FnomeFih:Zn—UMN) with  FromedDF/
=diag1l,w,0?, ...,w" 1) contains the irreducible representations>1w*) for all ke {0,1, ...,
n-1}. Following Algorithm 6 from Sec. IV, we choosg’ with ¢’(1)=diag?, ... ,0"%) in order



012104-12  Decker, Janzing, and Rotteler J. Math. Phys. 46, 012104 (2005)

to obtain ¢ @ ¢' =F ¢moFr. Since each irreducible representatiors 1w*) with ke {0,1,... n
-1} has dimension one and the irreducible representations definegsiw!) are inequivalent for
differentk we have the intertwining space

T= Int(e ® (p',anomonFl) ={diag\y, ... Ap):\j e G} C C™N,

We have to find a matri;éeu(n) in the intertwining spaca' that has the matrixC e C9" as

upper part. As stated above, the matvixe C4<" defines\j=1forje{0,1,... d-1}. SinceC has
to be a unitary matrix we must chookgwith the absolute valug\;|=1 for j e {d, ... ,n-1}.
In order to simplify the matrices we skf=1 for all j e {d, ... ,n—1}. With these elements;

we have the equatioB=1,. Furthermore, we choo3é=1,_4 in Algorithm 6 from Sec. IV leading
to Ue V=1,. Consequently, we obtain the equation

M =W'Cl(U e V)=Fl1,1,=F/.

This equation shows that the inverse Fourier transfvtie Fl is a unitary transform that imple-
ments the group-covariant POVM with defining mat(®. Recall that fom=2* wherek e N the
Fourier transform can be implemented efficiently on a qubit reg?%f@r.

B. Dihedral groups

Let Don=(r,s:rM=1,82=1,srs1=r2) be the dihedral groi with n=2m=2%1 elements for
a fixedm=2=4. The element denotes the rotation arsthe reflection of the dihedral group. We
consider the irreducible representatignD,,,,— /(2) that is defined by

w 0 01
qo(r)=(o a)_l) andqo(S)=<1 o)'

The elementw=exp27i/m) is anmth root of unity. Fora, 8 € C with |a|?+|8|?=1/m we con-
sider the POVM with the corresponding matrix

Mz(a a B ... B )ECZX”.

B ... Bo™l a ... ao™?
The matrix M e C2*" has the symmetrypM =M ¢po, Where ¢, is defined by the equations

Pmor(1) =1,® 0S,2 and gpor(S) =0 ® FA T, The matricesS,, T, e C™™ are defined by the equa-
tions (indices are taken modulm)

m-1 m-1

Sn=2 i+ 1], Tp=2 oliXi
i=0

i=0

and F,, denotes the discrete Fourier transform defined in the preceding section. In order to de-
composep,q, into irreducibles the following permutatio®, is useful. Denoting by the binary
complement of the binary vectorof lengthk we defineQy: |x,0)— |x,0) and Q,:|x,1)—[x, 1).
Furthermore, we introduce the representatigndefined by

o 0 01
¢|(r):<0 w_') and<p|(s):<1 0).

With this notation we haver=¢;. The two-dimensional representatiogs are irreducible and
inequivalent* for different 1 e{1,... m/2}. Now, using the base changd&/:=Q.(1,®F)
e C™" we obtain that
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0){o] —{a—

10){0] S —
i F

|0)(0] S —

P -

FIG. 1. Quantum circuit for the implementation of the dihedral POVM.

WomeW' =& @ @ i,

where ¢ is a direct sum of all representatiogs with odd j. The first component of is ¢4, the
other componentg; appear in a specific order which is irrelevant in the sequel. We choose the
representation

o=y ooy,

where ¢’ is obtained fromy by dropping ¢;. This leads top & ¢’ =WemeW'. The matrixC
=MW'=(Vma O- - -0| \m,B 0---0)® 1, e C2*" defines the first two rows of the intertwining matrix

C we want to construct according to Algorlthm 6 from Sec. IV. A possible extension of the
intertwining matrixC € C2<" to a unitary matrixC eU(n) is C=A® 1,2 with the matrix

A:\E<i '8_) e U?2).
:8 -

According to Algorithm 6 from Sec. IV we must define the matritks 24(2) andV e U(n-2).
The equationse=¢; and WemoW'=(¢,@ ') @ ¢® @ show thatU=1,. Furthermore, we
chooseV=1,_,. Then we have the matri’ ®V=1,. To summarize, we must implement the
matrix

MT=W'CT= (1, ® F,) QA" ® 1,) e U(n)

in order to measure the POVM corresponding to the dihedral gipuhe scheme of the circuit
corresponding tM" is shown in Fig. 1.

C. Weyl-Heisenberg groups

In the following we introduce the finite Weyl-Heisenberg groups which are matrix groups
acting on a finite-dimensional vector space. For our purposes we consider vector spaces of dimen-
sionm=2X only, wherek= 2. Then the Weyl-Heisenberg gro@, is the group generated by the
matricesS,=(1,2, ... m) andT,=diagl,w,®?, ... ,0™") wherew=exp2xi/m) e C is a primi-
tive mth root of unity. It is known thaG,, containsm® elements® POVMs that are covariant with
respect to the Weyl-Heisenberg groups have a physical motivation. Since the position and mo-
mentum of a particle cannot be measured simultaneously by any projection-valued measurement
one must construct POVMs which measure both observables with a certain inaccuracy. This idea
has already been described in Ref. 19 starting from a wave packet, i.e., a unit jgctor
e L%(R) we define a sefMg,} of operators by
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1. .
Ms,t = ZTe|SP+tQ| ¢><¢|e isP tQ,

wherest e R andP andQ are the position and momentum operators, respectively. Explicitly, they
are defined byP)(x):=—i(d/dx)y(x) and (Qu)(X):=xi(x). We then have that

f Mgidsdt=1.
st

The POVM {Mq,} provides an approximative realization of the classical phase space since the
measurement outcom(s,t) can be interpreted as the poi#,t) in the phase space. In the fol-
lowing we are interested in finite-dimensional approximations of this. Assume that we want to
measure the position and crystal momentum of a particle on a latticemvhints form=2k3¢
Furthermore, we assume that it is possible to transfer the state of such a systémubits of a
quantum register in the sense that one can implement the SWAP operations,

eli)=li)el).

Here the left-hand vector denotes a joint state of particle and register where the particle is at
positionj in the lattice and the register is in it canonical basis state. The states corresponding
to the vectorsS{T'e?™/Mj) with 1=0,... m-1 are the eigenstates of the crystal momentum.
Explicitly, the crystal momentunp can be defined by:=2#l/m-m. With this definition the
values of p are in the interval[-m, | that meets the usual physical intuition of the one-
dimensional Brillouin zone of an infinite one-dimensional crystal. Here we characterize the posi-
tion and momentum simply by the integer valye$=0, ... m—1. The cyclic translation of the
position is given by the action d§,, and a change of crystal momentum by the action gf
Consider a rank-one positive operatgi(y| with the property that neither the position nor the
momentum of the corresponding state is completely undefined. Set

M],l

ST T S

S|

Due to irreducible group action the equatiap M; =1, holds and the operatofd;, define a
POVM. For largem we can find states with corresponding state vedrsuch that both values

j andl are approximately defined. Here the word “approximately” is understood with respect to
the cyclic topology, i.e.m—1 and 0 are “almost” the same value. A good choice for the POVM
will be the following. Sety):= chj|j> where the coefficients; are chosen such that the function
j—|cj|* has a unique maximum @ and the modulus of the values decrease with increasing
distance fromj, in the cyclic topology. If all values; are real and they decrease not too quickly
the momentum of the state is aroungl, too. Then the measurement valygscan directly be
interpreted as a good estimation for the position and momentum values. We will show that an
efficient implementation of the POVM can be found in the case whdye)
=1/Vk(1,a,a?,...,a"272,oMW27L @21 oM272 | 42 @, 1)T e C™ with a e C and an appropri-

ate normalization factor k.

In the following we consider the group-generated POVMs with respeGttand the natural
representatiorp defined byg(g)=g for all g e G,,,. This representation is irreducible. Therefore,
following Algorithm 6 from Sec. IV we can sél=1,, sincel,,, decomposes® into a direct sum of
irreducible representations. The vectd#)=(v,...,v,)" € C™ with the normalizationv,|>+- -
+|v|?=1/m leads to the POVM where the defining mathke C™" is given by
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U1 U1 U1 Um Um o Up o e 2]

Uy, U vo0™t vy vi0™? U3 vaw™?
m-1

Um Umw Umw -1 +++ Upp1®@ ... U1 ... (25X

Note that we identify vectorg|¥) andh| W) for differentg,h e G, that are equal up to a global
phase factor. Consequently, the POVM consists of at mest? different operators. For example,
when m=4 the vector|V)=(v,,v,,03,04)" € C* With [v4]2+|vo>+|v4|?+|v4/?=1/4 leads to the
POVM with n=16 operators and the corresponding malfixc C*<'6 whereM is defined by

Vi Uy Uy Uy Usg Ug Ug U4 ... Ug Us Uy Uy
Uy Ul —Uy —Us vy vql —Uqg —vql ... v U3 —Uv3 —vsl
U3 —U3 U3 —U3 Uy —U»p Uo —Up ... Uy —Uy Uy —Uy
Uy —Ug —Ug U4 U3 —U3l —v3 U3l ... vy —vid —vg Uql

The symmetry ofM e C™" can be described on the generators by the equafigis=M(1,,
®S,) and S;M=M(S,®T"). Therefore the representationy,q,:Gn,—U(n) is defined by
Gmord Tr) =1m® S @nd @mod Sy =S @ T, The symmetry oM can also be written as

T,M=M(1,® T,)fFm and SM = M(Th ® ) FmFm,

where we use the notatioh*=X'AX and the Fourier transforr,,, as defined in Sec. VI A. We
can write(1,® Ty) and(TTm®Sm) as direct sums

An®@ T =T®T® - @ T, and (Th®S)=Sn® 0™ 'S, @ -+ ® wSy,

By using the equation$,,S, T\ = wS, and(1,® Sm)ZT:(TL@) Sy we can conjugate these matrices
with the diagonal matriZ=1,® Th '@ T ?®--- @ T2& T, in order to obtain the equations

T.M=M(L,® T,)2 FréF  and S,M=M(L,® S FneFm.

These equations show that we have the decomposiign,W'=¢@® --- ® ¢ with the matrix
W:ZT(FIn® Fn). The representatioWe,,, W' containsm componentsp. Following Algorithm 6
from Sec. IV we must find a representatighthat leads to the direct supw ¢’ =@ - - ® ¢ with
m componentsp. Consequently, we choosg =¢@® -+ ® ¢ with m—1 componentsp. We now
consider the extension of the matri@=MW'=M(F,® F;‘n)ZeCmX“ to a unitary matrix C
e U(n). The matrixC is an element of the intertwining space,

Int(e,e @ -+ ® @) ={(ay, ... ) ® Lyaj e C} C C™N,

More precisely, we hav@z((\%vl, e ,\e’ﬁvm)F;) ® 1, € C™" For example, fom=4 we obtain
the groupG,=(S,,T,) with $,=(1,2,3,4 andT,=diag1,i,-1,-) that contains 64 elements. In
this example we have the equation

1 1 1 1 1
1 —-i -1 i -1
_ ‘C4><16.
C (Ul,UZ,U3,U4) 1 -1 1 -1 © . -1 <

The matrixC e C™" determines the firsh rows of the matrixC we want to construct. The matrix
C is a unitary matrix of the intertwining space,
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10){0|
10)(0] — ;
oo L A - Fm
[0){0|
(At ® I;) z (Frm ® FL)

FIG. 2. Circuit for the implementation of the POVM with respect to the Weyl-Heisenberg group and the [Wctor
=(vy, ... vy . The vectorlW) determines the matria'.

INt(e® - @ 0,0® -+ ® @) ={A® 1L;A e C™M C CM™N,

When we writeC=A® 1., then the matrixC determines the first row dk. Explicitly, the first row
of Ais

(Vmos, ... NmogFL (3)

The operatiori\N/I’r for the implementation of the POVM is defined by

MT=WIC'(U & V) = (F,® FZ(AT ® 1) e U(n).

In this equation we hav®=1,_,, leading toUeV=1,®1,,=1,. The general scheme for the

implementation of the matrik T is shown in Fig. 2. Fom= 2 the circuit contains thk controlled
operations

TOLT 2 . T oma -2

for the implementation of the matriz. The matrixT,=diag1,w,®?, ... ,0™?) can be written as
Kronecker product

T_(l 0)(1 o) (10) -
m_me/2®0wm/4® ®Owem.

Therefore, the matrice'!é{T1 of the circuit in Fig. 2 can be implemented efficiently on a register of
qubits.

The circuit in Fig. 2 is efficient if the matriA that contains the vect@B) as the first row can
be implemented efficiently. We can find such a matrix for the POVM with the vector

1
W)= =(1,a,0? ... ,a"?72a"W?7L @MW1 oM272 | a2 0,17 e CM, (4)
VK

where we havea e C and the normalizatiork=2m(1+|a|?+|al*+---+|a|™?). A matrix A
e U(m) that contains the vectdB) as the first row is given by
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JaR) B’( /M
N m/4 N
™ B’r JaR)
€/ m/8 \J/
M M
N B! N
B}
Jmpp |BLu®-®B) I, Fm

FIG. 3. Implementation of the matrik" whereA is a matrix that contains the vect(8) as the first row. This matrix is part
of the circuit in Fig. 2 for the vector&}).

A=J! »(Brya® Brg® -+ ® B,® B, ® By ® By)JmaF i,

where we use the unitary matrices

B = 1 (1 aj> ue)
J_\r'mai _1 < '

Here J, is defined to be the permutation matrix which mags->2 and (2i-1)—-i for i
=0, ... k. In our example wittm=4 we have the matrix

o « 1
1 -1 -1 o
\/2+—ZM|2 a -1 1 -«

1 o -a -1

1
a

J(B, ® By)Jy =

The circuit scheme for the implementation of the matrix

Al=FJl (Bl ,©Bls® -+ ®B] @B ® Bl ® B))Jn,

is shown in Fig. 3.

VIl. CONCLUSIONS AND OUTLOOK

We have shown that a group-covariant POVM can be reduced to an orthogonal measurements
by a unitary transform which is symmetric in the sense that it intertwines two different group
representations. The symmetry of the unitary transform can be used to derive decompositions
which in several cases of intergsts the Weyl-Heisenberg groufgads to an efficient quantum
circuit for the implementation of the POVM.

We have argued that POVMs are often necessary in order to understand why large quantum
systems show typically classical behavior on the phenomenological level. The POVM with Weyl—
Heisenberg symmetry as well as the example in Ref. 5 show that the POVMs which appear in this
context are often covariant with respect to some group.

Besides the physical motivation to study implementations of POVMs by means of orthogonal
measurements in terms of quantum circuits there is also a motivation from computer science. The
so-calledhidden subgroup proble%is an attractive generalization of the quantum algorithms for
discrete logarithms and factoriﬁ&.The standard approach for the hidden subgroup problem
consists in a Fourier transform for the respective group followed by a suitable post-processing on
the Fourier coefficients’ For Abelian groups this post-processing consists simply in an orthogo-
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nal measurement in the computational basis. However, for non-Abelian group measurements
which are in fact POVMs are often more advantageous, see, e.g., Ref. 40. The POVMs which
appear to be useful to solve hidden subgroup problems for non-Abelian groups are naturally group
covariant. The methods presented in this paper might be useful to find quantum algorithms for the
hidden subgroup problem for new classes of non-Abelian groups.
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We consider a Schrddinger operator with a constant magnetic field in a one-half
three-dimensional space, with Neumann-type boundary conditions. It is known
from the works by Lu—Pan and Helffer—Morame that the lower bound of its spec-
trum is less tharb, the intensity of the magnetic field, provided that the magnetic
field is not normal to the boundary. We prove that the spectrum unéenr finite

set of eigenvaluegeach of infinite multiplicity. In the case when the angle be-
tween the magnetic field and the boundary is small, we give a sharp asymptotic
expansion of the number of these eigenvalues2@5 American Institute of
Physics.[DOI: 10.1063/1.1827922

I. INTRODUCTION

Let us consider, fort,x,y) in the half-spaceE=R, X R?, the Neumann realization of the
operator with magnetic field

H=(D;=A)? + (D= Ay + (Dy - Ay)?,

whereD¢=~i(d/ ds).
We will assume that the magnetic fietB¥dA, seen as a three-dimensional vector field, is not

tangent to the boundawk, and denote by the angle betweeB and the plané=0 and byb the
norm of B.

This implies that a suitable choice for the gauyés the 1-form,
A=Db(xsin#-tcosé)dy
(so thatA;=A,=0), since the conditioB=dA leads to the 2-form,

B=bsingdxOdy—-bcosddt Ody (06 {Og])

Now the operatoH can be written as
H,=D?+ D5+ (D, - b(xsin gt cosf))>. (1.1

The spectrum of the Neumann operdtty (corresponding to the cage=0) is absolutely continu-
ous, as proved by Lu and P& 712 More precisely one has

a(Ho) = oadHo) = [bug + [, (1.2

¥E|ectronic mail: morame@math.univ-nantes.fr
PElectronic mail: francoise.truc@uijf-grenoble.fr

0022-2488/2005/46(1)/012105/13/$22.50 46, 012105-1 © 2005 American Institute of Physics
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Mo = inf u(é), (1.3
£eR

where u(¢) denotes the first eigenvalue of the Neumann ope@gerDt2+(t—§)2 on L4R,),

(& =info(Qp) = inf f [IDf[?+ (t = &)?/f[*]ct. (1.9
Ifl2r,)=1J R,
It is also shown in Refs. 10-12 that, &= 7/2, the spectrum of ., is absolutely continuous,
O-(H7T/2) = 0™ [b1 + oo[' (15)
When 6 e 10,7/ 2[, the spectrum ofH, is no longer absolutely continuogsee Refs. 8—12
We are precisely interested in that case,

0<g<_. (1.6)
2
First, performing a partial Fourier transform in the variableve observe that
O-(Hﬂ) = U]R(T(HH,T)’ (17)
whereH, . denotes the Neumann realization in the half-pl&sel, X R of the operator,

H,,= D2+ D2+ (7-b(x sin 6 —t cos6))?. (1.8

Furthermore, using for any the change of coordinates—x—(r/bsin ), we see that(H,,)
=o(H,0), and then the spectrum &f, is essential and given by

o(Hy) = gesdHg) = a(Hp0) =b X a(Py), (1.9

if P,=D?+DZ2+(t cosf-xsin 6)? is the Neumann operator on the half-plafeR, X R.
In Refs. 9 and 12 it was proved that

inf o(P,) = 1(6) < 1= inf ol Py), (1.10

so there exists a countable set of eigenvalueB pf(vj(6));.,, (ICN), in [»(6),1[. Each eigen-
value is of finite multiplicity, so we will assume that each one is repeated according to its
multiplicity. The associated orthonormalized sequence of eigenfunctions will be denoted by

(o) crs

Potoj = vi(0) iy,
<¢0,j|¢ak> = 5jk:

By 1(Po)f = 2 (i )it
J

[{g|f)=fegf dt dx and E;(P,) denotes the spectral projection Bf, on J]. Coming back to the
operator(H,) we can write

a(Hy N ] —,b[ ={br(6),br(6), ... bri(6),b;1(6), ...}, (1.11

where eactby;(6) is now an eigenvalue of infinite multiplicity dfl,.
For anyd=<1 let us denote byN(d,P,) the number of eigenvalues & in ]-o,d[,

N(d,Py) = THE ... (Py) = #{j;%;(6) < dl. (1.12
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The aim of this work is first to prove that for artye 10,7/2[, the number of eigenvalues of
P, in ]-o,1] is finite. This is the purpose of Sec. Il. Another interesting question is to get the
asymptotic behavior dii(d, P,) as 6 goes to zero, whed< 1. This is done in Sec. IV. Section I
is devoted to a survey of preliminary results about the functi6f) defined in(1.4), which are
required in the computation of the asymptotics in Sec. IV.

II. FINITENESS OF THE DISCRETE SPECTRUM

The purpose of this section is to prove the following theorem.
Theorem 2.1: There exists a constant=1 such that, for any e 10,7/2[,

(2.2
Proof: We have the following conventions.

Convention 2.2 < 10,#/2[ is fixed

Convention 2.3: From now on, any constant depending only @aiill be denoted invariably
as G,

If the constant does not depend énit will be denoted invariably as C

Let us denote by, the quadratic form associated Ry,

qe(u) = f [|Du|? + |Dyul? + (t cos 6 — x sin 6)?|u]?]dt dx, (2.2
F
Ou e HYF) N LAF;(tcos@-xsin ) dt dx) (F=R.; X R,).
There exists a partition of unitgy(t), x1(t)) satisfying

Xo(t):]. if t< 1,
N®=0 ift>2, 2.3

Xa(t) + x50 =1,
Let R>1 be fixed. We consider the following covering 6f

Opr=1{(t,x) € Ry X R, 0<t<2R},

Ol’R:{(t,X) € R+><R, R<t} (24)
We define the partition of unityxor(t), x1 r(t)) by

xR = X(é) : (2.9

Let us recall that
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Ae(U) = 2 dglxjRY) = 2 [1x] Ul (2.6)
J J

We define the following quadratic forms:

Qoo(W) = | [IDul*+Dyul*+ ((t cos - x sin )% = Vg(t)|uf]dt dx, (2.7)

Opr

Ou e HY(Ogr) N LAOpgr;x?dtdx), u/ft=2R}=0,
with Vg(t) =] Xj"R(t)|2, and

Qg 1(U) = [|D.ul?+ |Dyul? + ((t cos 8 — x sin 6)% — V(1)) |u[?]dt dx, (2.9

O1r

Ou e HY(O;g) N L% Oy g;(tcosf-xsinh)?dtdx), uw{t=R}=0.
By min—max principle, we have
N(1,94) =< N(1,04,0) + N(1,04,2)- (2.9

This estimate remains if we chan@g g into R? in the definition ofqy,s,

O f [|D.ul? + |Dyul? + ((t cos8— x sin 6)% — V(1)) |u[?]dt dx, (2.10
]RZ

Ou e HY(R?) N L2(R?;(t cosd—x sin 6) dt dx).

The operatolP, o, associated tg|, o has compact resolvent, and

Qgo(U) = J
0

So, if we denote b),p]Q the eigenvalues ofD,u|? on [0,1] with Neumann conditions on 0 and
Dirichlet conditions on 1, we have

1 C
{|Dtu|2 + D, + <§x2 sir §— 4R? cos 0 - ¥)|u|z} dt dx.

OR

2k+1 0 C
N(1,040) < #{(k;j)eNz; 5 sin0+4—pé—2$l+4chosZ0+¥}. (2.11)
\’

Using thatp!~ j? asj—, we get easily

CR
N(Lago) = _ 1+ R? cos g]*2. (2.12

Using the orthonormal change of coordinatésx)—(s,y) with s=tcosf-xsin6, and
y=tsin #+xcosd, we can take for,, the following expression:

dga(U) = f [IDU[? +[Dyul? + (s° = Vi(s,y))|ul*]ds dy, (2.13
]RZ

Ou e HY(R?) NL%(R?; s dsdy), with

2

1 ,[ scosf+ysiné
VRSY) = 52 x<—y) (2.14
J

J R
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Let us consider the orthogonal projections

My(u)(sy) =" f ury)e 2L
H |

N

Au=u-TIIu,

so that, for anyu e L2(R?), we get]|u|[>=|[TT,u][>+||Aul.
Writing TT,u(s, y) =(e7572/ 74 y(y) and

1
Wr(y) = —= f & Vr(sy)ds,
R

NT

we obtain that

Qo110 = L 11D, 42+ (1~ W) #21cly.

We have also

C
qal(Alu)zf2{|DyAlu|2+(3—E>|Alu|2]dsdy.

R

But

dg,1(U) = A 1(IT1U) + gy 1(Aqu) — 2 Rej ) Vg(s,y)I u A_lu dsdy,
R

so, for anyee 10, 1],

1
Qg,1(U) = gy, (IT5u) - ;j 2V2R(S,y)|H1U|2 dsdy+qg(Aqu) - el Aqul>.
R

Thanks to(2.17), we can takee=1 andR large enough such that

A,a(Au) = [|A Ul > [|Aqul?,
for example R satisfying 2«C/R?) >1.
Then, by(2.16), (2.18), and(2.20, we get that

N(1,04,1) < N(0,04,1,0),

Qo o) = f 10,2~ Wi )30y

Oy e HY(R), with

1
Wei(y) = —= | e TV(sy) + Vi(sy)]ds.
NTJIR

From (2.3) and the formulg2.14), the following bound holds:

(2.15

(2.16

(2.17

(2.19

(2.19

(2.20

(2.21)

(2.22
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(2R-y sin #)/cos 6

0=WrilY) = 5 e ds
R (R-y sin 6)/cos 6

[we used the fact that, for any fixeg Vg(s,y)=0 for s outside the interval defined bR
<scosf+ysin 6<2R], so

[e—[(y sin 6 - R)%)icos ¢ + e—[(y sin 6 - 2R)?)/cos 0]

0<=Wgaly) = E)([Fe/z in 6,3R/sin 6(Y) +
: R? SIn o, 5Rs Rcosé

(2.23

As the operators on L%R), 3DZ- (C/Rcose)e‘[(ys'”a R)jcos 6, 3D2-(C/Rcos)

x g llysin6-2R2Jicod 0 gng (sir? 6/3 co$ 49)D2 (C/Rcosfh)e ¥ have the same spectrum we get
from (2.21)«2.23 that

N(1,04,2) < 2N(0,04,1,1) + N(0,041 ), (2.29
if
6
o1,1(¥) = {;éoé a' Dyyf* - Rcosae yzltﬂlz]dy, (2.25
and
_ 1 ,_C 2
qﬁ,l,z(w)_ . §|Dy¢| - QX[RIZ sin 6,3R/sin 0](Y)|¢| dy, (2-26)

Oy e HY(R), for someR>1 independent of e 10,7/ 2[.
It is now possible to deduce from Theorem 1 in the work of Egorov and KondPatfey
following estimatesN(0,qy ;1) < C(cos’? 6/sin 6) andN(0,qy,1 o) <C/sin 6, so

C
N(1,9g1) < sno’ (2.27

We conclude from2.9), (2.12), and(2.27) that the estimaté2.1) is valid.

Ill. SOME PROPERTIES OF u(¢)

The properties of the first eigenvalue(é), of the Neumann operator drf(R.), Q§=Dt2+(t
-§)?, can be found in Refs. 3, 7, 11, and (&8so see Refs. 2, 4, and.6
The main ones are

m e C*(R),
p'(&) #0 if £+ &,
w®>1 ife<o, (3.1)
m@ <1 if >0,
limg . w(§) = +o0, limg .. u(é)=1

[£>0 is such that3=u(&)]-
Let ¢, be a normalized eigenfunction associateq«td),
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ledizr,) =1, ¢x0)=0, Qupr=pu(é)e,, (3.2
then

© ()=~ (ué - &)¢:0). (3.9

It is easy to see thap, is exponentially decreasing. More precisely we have the following.
Lemma 3.1: There existsyC 1 such that

1-Cye % < p(g). (3.9

Moreover, if u,(€) is the second eigenvalue of.Qhen we have also

142
3-Cee 1E/Co < wo(€). (3.5

Proof: We proceed as in Ref. 4 to get first the following bound: For @nyl and 7
10,1,

M2t -
[7(t= &2 - pu(&)].63 777 g 02 dt < (@), (3.6
Ry
For any Lipschitz and real functio#®, with compact support,
IDUE® @o)lF2r,, = ([a(O) = (t= €2+ ()] e,
o]

([(t=92= w(d = (@)?].e¢de”p) < ((u(d) = (t— 2+ (D")?],e%peP¢y).

This estimate is still valid fo with noncompact support, provided that the right-hand side of the
inequality is finite; so we can tak@(t)=(1-7)Y4(t-¢)?/2 to get(3.6). Now, let y be a smooth
cutoff function onR,

x € C*(R),

xt)=1 if —1<t<1,

(3.7
x=0 if|t|>2,
Osys<1.
If £>1, we define the functioip, (t) = x(4[(t— &)/ £]) e1).
So,
~ 2 ~ 2 ~216/t_§~2
D@1 dI° + It = &1 = w(&))l[ @14 "'? X 4? o
As ¢, is of compact support and the first eigenvalueDﬁfk (t-&2? on LAR) is 1, then
" . 16| ,( t-¢&\ |
||€01,§||2S M(§))||<P1,§||2+? X (4?)% ,

then we use the estimat®.6) to see that, for some constadt>1, 1< u(§) +Ce‘§2’c, the estimate
(3.4) follows.

If u,(é) is the second eigenvalue @ and ¢, , the associated normalized eigenfunction, then
we have in the same way, for any real functidn
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([(t= %= ua(d - (q)')2]+e¢¢2,§|e®§02,§> < ([pa(d) = (t- %+ (CID’)2]+e‘I’<p2,§| eq)ﬁpz,g).

SO ¢, ¢ Is exponentially decreasing ag, and if @, ((t) = x(4[(t— &)/ &]) @, (1), then

~ ~ _2
D@2 7 + [[(t = OPp P < ua() + Cee e

and

~ _ 2
€24l - 1| < Ce ¢ic,

~ ~ _2
|<<P1,§|<P2,§>| <cetlC, (3.9

Those estimateg3.4) and the min—-max principle show th;(azt2(§)+Ce‘§2’C is greater than the

second eigenvalue db?+(t—¢)? on LAR), so 3$,u2(§)+Ce‘§2’C. This ends the proof of the
lemma.

IV. THE CASE OF SMALL 6

We are still investigating the spectrum of the opera®yr defined in the Introduction as
follows:

Py=D?Z+ D2+ (t cosf - x sin )2,

Performing the scalingt,x) — (tVcos#,—x sin 8/ Vcos6), we observe that this operator has the
same spectrum as

sir? 0
P,=cosf[D?+ (t-x)?] + ——D?
o [+ (t=x7] cosd *
(we keep on the same notation for simplificagion
It has been proved in Ref. 8 that for small valuesfof O the following asymptotics hold:
inf o(Pg) ~ po+ 2, ¢;0.
=1
Therefore let us consider a set,
lg= ] —oo,d  withde Jug1l.

The goal of this section is to get information about

N(d,Py) = #a(Py) N ] —oo,d[, (4.2

which denotes the number of eigenvaluesPgfincluded in the sely.
For a fixeda>1 let us consider the following sets:

and a partition of unity
Xo) +x3(x) =1, supporty;) CJ;, X [x](xP<C.
]

For j=0,1 let usdenote by(); the domainsk,xJ;, Qo=R,X]-a,+=[ and Q;=R, X ]-»,
-a/2[. We take now the realization of the operatd®§ on each domairn();, associated to
the quadratic forrmﬂj, with Neumann conditions oii’y={0} X J; and Dirichlet conditions on
FD:R+ X (9‘]]
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The quadratic forms are defined as follows:

Sir 0

0056

sir? 0
anw=] {cosanotw% (=02 + 2, - 2 X <x>|2|u|2}dt o

Let us first explain wh)qn will not give any contribution to the term(d, P,).
According to Sec. Ill we know thai(x), the first eigenvalue oD+ (t-x)? is decreasing on
J;, so we have

= ul-2)ooso- 2 |2
Go, (0= 475 cosg | Q"
But u(-a/2)>1, so for small the preceding minoring ensues
G, (W) = ||U||Ez(nl) if0 <6< 6, (4.2

for somef, e 10,7/4][.

In order to study the forrquO, it is convenient to use the normalized eigenfunctign
associated tau(x), in the following way.

Let us denote byly(u) the orthogonal projection on the set

Fo={ex(O¥(X); ¢ e L3(Jp)}, (4.3
defined by

Ho(u) = (Px(t)( f u(s, X)cpx(S)dS) : (4.4)
R

L4

and byF;=(Fy)* the orthogonal set df,. The corresponding orthogonal projection is

Hl:l_l_.[o.

A direct computation gives
ax(ou) = Tlg(gu) + R(u),

whereR is defined by

R(u)= wx(t)< J U(s,X)ﬂxsox(S)dS> + &xsox(t)< f U(s,X)qox(S)dS). (4.5
R, Ry
The additional fact that

dy(I13u) =113 (d,u) = R(u)

yields the following bounds:

1
(L= DM gy 0 g1+ 2 1 IR

= 1300y = (1 AT 110 1 +2( 142 RO

Let us establish now the following lemma.
Lemma 4.1:

DCO >0, st Oue LZ(Qo), ”R(U)HLZ(QO) = Co||u||L2(QO). (46)
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Taking norms in(4.5) we have

”R(u)”iz(go) = zf |U(S1X)(ax§0x(s))|2 dS dX+ 2 Slj']mé’x(Px(t)”EZ(RJr)”u”iZ(QO)
Qo Xedo

<4 EUJId|r?x<Px(t)||fz(R+)||U||fz(go)-
eJ

The lemma will then be proved if we show that §y%||ﬂx¢x(t)||iz(ﬂ+)|| is finite.
We recall that some elementary technique of perturbation shows that

J _
&@x(t) = 2[Qx - M(X)] 1¢x, (47)
with
) = (t =X e(t) = (L= X) @ @ (D).
Now using
2 2 2
”DtZ(PXHLZ(HE) + ”(t - X)QDX”LZ(HE) = M(X)“(pX”LZ( HE) = ILL(X)v
we get that
It =) edlzr2) < Vu(x),
and then
K(t=X) ¢y <Px>L2(u«z§)| < Vu(x),
SO

f—
sdlzm2) < 2Vu(x).

Sinceyy lives on the orthogonal space @f, let us consider the nori, of the restriction of
[Q,—u(x)]™* to this orthogonal space. It is given by

1 1

T o) - ) ) - ux)

where(u;(x)); is the increasing sequence of the eigenvalue®,of
According to(3.2) and (3.5), u(x) and N, are uniformly bounded od,, so there exist£,
>0 such that

v (X)
SUpP| ey (t <2 su =< C,, 4.8
xd‘j' L @x( )||L2(\H+) XEJOIU’Z(X) — ul(x) 0 (4.8

so the Lemma 4.1 follows.
From Lemma 4.1, we see that we can find a constant 0, such that, for ang e 0, 1[,

G
€

1- E)[”ax(HOU)HiZ(QO) + H&x(HlU)HiZ(QO)] - _”UHiZ(QO)

C
< HaquiZ(Qo) <(1+ 5)[||5X(HOU)”i2(QO) + ||aX(Hlu)||EZ(QO)] + ?lHu”iZ(QO)-

From that we obtain the corresponding bounds on the quadraticqggm
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5 (TTou) + G- (I30) = g (U) = G5 (TTow) + g (M0, (4.9

where we used the natural notations

; sin’ 0 C
qgo(u):f {cose[|Dtu|2+(t—x)2|u|2]+ —e) |DX |2}dtd —_{ 1}||u|||_2m0
- cos6

and
sin* §C
g6, () = {cos¢9[|Dtu|2 (t- x)2|u|2]+(1+e) |DX |2}dtd 1|| ullZ2 09"
Qo
Writing
sin @
h=——, 4.10
ycosé ( ‘
taking into account4.3), we define
2
W(X) :f dt,
Ry

and we get, using4.4) that

G5, (o) = °~(y) = {[M(X)cosﬁ + (1= @PPWOOTJ(x) 2 + (1 — ) h*Dy(x)|?
Jo

- hZ[C+ %}M(X)F}dx.

In the same way we have

g6, (ow) = q°*(y) = {[M(X)cosﬁ + (1 + @PPWOOTJ(x)? + (1 + )’ Dyr(x)|?
Jo

C
+ hz?l|¢(x)|2}dx.

Now we must deal with the terms involving the second projecliqu. But the definition ofil,u,
the min—-max principle and the estimate 1-@esh?C give the following lower bound:

qGE (M) = { inf i5(x) - h2<C + —>]||H1U||L2<Q )

where u,(x) denotes the second eigenvalue defined in the Lemma 3.1. This eigenvalue must be
greater than the first eigenvalue of the corresponding Dirichlet problem, so

Mo(X) > 1.
Let us takee=h. We get that

N(d, ) = N(d,g"*).

Let us take an extensigi(x) of w(x) outside of
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Jog=1{x € Jo, () < d+(1-d)/2}, (4.12)

such that

w(X) = u(x) if X e Jog,
w(x)=(1+d)/2, Oxé&Jog, (4.12

ax)=1 if|x>Cy,

for some constan€;>0. Let us define

a5 () = f [AOOIGOP + (12 WD) .

We will need the following lemma.
Lemma 4.2: Let (k) e C*(R;R), E e R and >0 such that U(]-o,E+ 7)) is bounded
Then for any interval | of satisfyingR\I C[E+(7/2), +=[, there exists a constant<C,
>0 such that

N(E, Ghu,) < N(E,0hy) < N(E+h*C,dhy,), (4.13

() = jR [WID,a02 + U0l i0f2ld, 04  CE(R),

and

G () = j [W2ID,00[2 + U000, 04 e C301).
|

From the estimate4.13) we get

N(d - hC,g5®) = N(d,g**) = N(d + hC,q§*) (4.19

[we have used thai(x) is bounded inJ,, thanks to(4.8), then we apply the left-hand side of
(4.13 to N(d+hC,q§™) and the right-hand side @#.13) to N(d—hC,q§*), both with|=Jg].

Applying a classical estimate N(d,qg'i) (see, for example, Ref. 13, Theorem V-11, p. 263
we have that, for ank <(1+d)/2, there exist<, >0 such that, for anhh e ]0,1/7,

NN, gf*) - [N —u(X)]¥2dx| < C,. (4.15

2mhy1+hJg

According to the choice o and(3.1), we can use the fact that (x) # 0 for u(x)=d and get from
(4.9+4.12), (4.14), and(4.15 with A=d=hC, that there exist€;>0, depending only od, such
that

N(d,qo,) - <Cq. (4.1

2

1 _ 1/2
wsinaL[d m(X) ] dx

We get easily from the above discussion the following theorem.
Theorem 4.3: For any de Jug, 1[, there exists g>0 such that

N(d,Py) -

<C,. (4.17)

1
d- l/Zd
2 sin QL[ () ]5° dx
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Sketch of the proof of Lemma 4 Phe min—max principle proves the left-hand sidg4f13).
For the right-hand side, take a partition of unity][hf)(g(x)+xi(x):1 such thaijy, is supported in

| and x; supported) C U™X([E+ zy, +<[), for someno>0. Thendy(#) =ty (xoih) * thu, (1),
with Up(x)=U(x) = (x5(x))?+ (x1(x))?]. From the min-max principle, we get that

N(E,ghu) < N(E,Ghy, 1) + N(E,Ghy, 5)-

If his small enough, theN(E,qyy, 5)=0 and we get the right-hand side @f.13).

Remark 4.4: The conditiod< 6, (4.2) can be removed since(d,P,) is finite for fixed#
according to Theorem 2.1

Remark 4.5: It should be possible to apply the technique of Balazard—Kbrteiget the
asymptotics of K, P,), but the result would be rough, compared to our result in Theorem 4.3: our
remainder is anO(1) and the result of Ref. 1 would giv@(sin 6) with p>1/2.

Moreover the assumptions in Ref. 1 are not satisfied in our.case
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The Wigner—-Weyl isomorphism for quantum mechanics on a compact simple Lie
groupG is developed in detail. Several features are shown to arise which have no
counterparts in the familiar Cartesian case. Notable among these is the notion of a
semiquantized phase space, a structure on which the Weyl symbols of operators
turn out to be naturally defined and, figuratively speaking, located midway between
the classical phase spaté G and the Hilbert space of square integrable functions
on G. General expressions for the star product for Weyl symbols are presented and
explicitly worked out for the angle-angular momentum case2@5 American
Institute of Physics[DOI: 10.1063/1.1825078

I. INTRODUCTION

It is well known that the method of Wigner distributiohsyhich describes every state of a
quantum mechanical system by a corresponding real quasiprobability density on the classical
phase space, is dual to the Weyl mapﬁiogclassical dynamical variables to quantum mechanical
operators. Together they provide the Wigner—Weyl isomorphism, whereby both states and opera-
tors in quantum mechanics can be givenumber descriptions on the classical phase space. The
trace of the product of two operators is then calculable as the integral of the product of the two
corresponding Weyl symbols or phase space functions. Combined with the work of fwm'mih
shows how products and commutators of operators are expressed in phase space language, this
entire development may be called the Wigner—-Weyl-Moyal or WWM method in quantum me-
chanics and has been instrumental in giving rise to the fertile subject of deformation quanfization.
An important feature of the Wigner distribution is that while it is not by itself a phase space
probability density, its marginals obtained by, respectively, integrating over momenta or over
coordinates do reproduce the quantum mechanical expressions for probability densities in coordi-
nate and in momentum space, respectively.

The WWM method has been studied most extensively in the case of Cartesian systems in
guantum mechanics. By this we mean those systems whose configuratiorQsizaéé for some
integern=1. The classical phase space is tierQ=R?". While Schrédinger wave functions are
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square integrable functions dif', both Wigner distributions and Weyl symbols are functions on

R?". Quantum kinematics can be expressed via the Heisenberg canonical commutation relations
for Cartesian coordinates and their conjugate momenta, or via the exponentiated Weyl form using
families of unitary operators. An important feature in this case is that as far as their eigenvalue
spectra are concerned, the momenta do not experience any quantization on their own; they account
for the second factor iT* Q=R?"=R"X R". Furthermore we have in this case the Stone—von
Neumann theorem on the uniqueness of the irreducible representation of the Heisenberg commu-
tation relations, and the important roles of the group$28@R) and M2n) corresponding to

linear canonical transformations on coordinates and momenta.

There has been for some time considerable interest in developing the Wigner—Weyl isomor-
phism for other kinds of quantum systems, that is, for non-Cartesian sySt&éhs these cases,
typically the underlying quantum kinematics cannot be expressed by Heisenberg-type commuta-
tion relations. The situations studied include the quantum mechanics of an angle-angular momen-
tum pair, where the configuration spaceQ'sSl,”'lsand finite state quantum systems correspond-
ing to a finite dimensional Hilbert spat&?® More recently, the method of Wigner distributions
has been developed for quantum systems whose configuration space is a compact simple Lie
group; and in the discrete case when it is a finite group of odd 6tdéin all these departures
from the Cartesian situation, an important aspect is the occurrence of new features which do not
show up at all with Cartesian variables.

The aim of the present work is to develop in detail the Wigner—-Weyl isomorphism for quan-
tum mechanics on a compact simple Lie group. Here the configuration §pé&e (compact
simple) Lie groupG, so the corresponding classical phase spade* =G X G*, where G* is
the dual to the Lie algebr& of G. In the quantum situation, Schrédinger wave functions are
complex square integrable functions @) and observables or dynamical variables are linear
Hermitian operators acting on such functions. The replacements for the canonical Heisenberg
commutation relations are best formulated using (tmmmutative algebra of suitable smooth
functions onG, and(say) the left regular representation & acting on functions on itself. The
natural question that arises in trying to set up a Wigner—Weyl isomorphism in this case is whether
guantum states and operators are to be described using suitable functions on the classical phase
spaceT* G. In Ref. 21 an overcomplete Wigner distribution formalism for quantum states, which
transforms in a reasonable way under left and right group actions and also reproduces the natural
marginal probability distributions, has been developed. The methods developed there are here
exploited to set up a Wigner—Weyl isomorphism in full detail, disclosing many interesting differ-
ences compared to the Cartesian case. In particular we find that this isomorphism does not directly
utilize c-number functions o7 * G at all, but instead uses a combination of functionsGand
operators on a simpler Hilbert space, standing in a sense midway betwe&gmnd the Hilbert
space of the quantum system. This feature is traceable to the non-Abelian na®jrsaohething
which is absent in the Cartesian case wiqgrs the Abelian grou®".

The material of this paper is organized as follows. In Sec. Il we briefly recapitulate key
features of the Wigner—Weyl isomorphism for the Cartesian and angle-angular momentum cases.
This sets the stage for Sec. Ill where we develop the quantum kinematics for situations where the
configuration space is a compact Lie group and thus go beyond the Abelian cases discussed in Sec.
I. This analysis leads to a proper identification of the analogues of the momenta of the Cartesian
case and helps set up the Wigner distribution for such situations possessing properties expected of
a Wigner distribution. The Wigner distributions so defined have a certain degree of overcomplete-
ness about them, a circumstance forced by the non-Abelian nature of the underlyinggraup
key ingredient in this construction is the notion of the midpoint of two group elements introduced
in an earlier work In Sec. IV a more compact description in terms of Weyl symbols devoid of
any redundances is developed and correspondences facilitating transition from the Cartesian case
to more general situations are established. The results of Sec. IV are exploited in Sec. V towards
defining a star product between Weyl symbols for operators and the general expression for the star
product is explicitly worked out for the non-Cartesian, albeit Abelian case of angle-angular mo-
mentum. Section VI is devoted to analyzing the minimal structure on which the Weyl symbols for
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operators find their natural definition. This leads to the concept of a noncommutative cotangent
space or a semiquantized phase space the ramifications of which are examined further towards
highlighting the structural similarity between classical phase space functions and the Weyl sym-
bols. A short appendix contains some technical details concerning results used in Sec. V.

II. THE WIGNER-WEYL ISOMORPHISM: CARTESIAN AND ANGLE-ANGULAR
MOMENTUM CASES

In this section we recall briefly the relevant structures needed to set up the Wigner—Weyl
isomorphism for Cartesian quantum mechanics. This is to facilitate comparison with the Lie group
case later on. For simplicity we choose one degree of freedom only, as the exten@am tds
straightforward. We also recall the angle-angular momentum sé’, where we already see
significant differences from the Cartesian case; these increase when weQga3o

One-dimensional Cartesian quantum mechanidse canonical Heisenberg commutation re-
lation between Hermitian coordinate and momentum operatansd p, fixing the kinematics, is

[q,p]=1. (2.)
In the unitary Weyl form this is expressed as follows:

U(p) = explip@), V(a) =exp-iqp),

U(pV(Q) =V(QU(p)e?, q,p€ER. (2.2

In the Cartesian case the exponentials can be combined to define a phase space displacement
operator

D(g,p) = U(p)V(g)e %2 = V(q)U(p)€P? = explipg - iqp). (2.3

However this cannot be done even in the single angle-angular momentum pair case, and also
when we treat the Lie group case. We therefore use expressions in which the exponentials are kept
separate.

The standard form of the unique irreducible representation of &g%. and (2.2) uses the
Hilbert space of square integrable functiop&y) on R. Introducing as usual an ideal basis of
eigenvectors ofj we have

H=LAR) :{tﬂ(q)l lff? = L daf (@) < m},

pa@)=(aly), Goy=qap, (2.9

(q'lgy= 48" - a).
On suchy(q) (subject to relevant domain conditiorthe actions ofg, p, U(p), V(q) are

d
@p(a)=ap@, @y(a)=- id—qzﬂ(q),

(UE)P)(Q) =P %), (V@)P)(g) =wa-a). (2.5)

The momentum space description|@§ uses the Fourier transform @f(q); in terms of the
ideal eigenstatep) for p,

~ d .
) = ol = Tﬂ exp(- ipQ) (),

R Ve
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iR = fdelTMp)lz. 2.6

The displacement operato(®.2) form a complete trace orthonormal q@t the continuum
sensgin the space of operators G,

Tr((U(p")V(@) U(p)V(9) = 278(q’ = a)8(p’ = p). (2.7

The completeness property will be used later.
The definitions of the Wigner distribution for a normalized pure stéte= H, or more gen-
erally for a mixed state with density operatarare

1 1 1\
W(aq,p) = ZJR dq’ w(q— Eq’)w<q + Eq’) exp(ipq’),

1 1,1, .
W(q,p)=;f dq’<q—5q’lpq+§q >exp(lpq)- (2.9
R

(The dependences dw), p are left implicity While W(q,p) is real though not always non-
negative, the recovery of the marginal position and momentum space probability densities is
assured by

L dp W(a,p) = (q|p|ap, L dg W(q,p) = (p|p|p)- (2.9

It is possible to expresd/(q,p) in a more compact form by introducing a family of Hermitian

operatorsW(q,p) on H with interesting algebraic properties. They are essentially the double
Fourier transforms of the displacement operat@rg),

W(g,p) = Tr(pW(g,p)),

1
(2m)?

W(g,p) =W(q,p) = f f dq’ dp’ U(p")V(q')gPd' P’ (@ (1120, (2.10
RJR

It has been shown in Ref. 17 that, apart from sharing the trace orthonormality prepé&jty
which is preserved by the Fourier transformation,

N - 1
Tr(W(g',p")W(q,p)) = Eé(q’ -q)ép' -p), (2.11

we have the following behaviors under anticommutation \gjitand p:

Ha,W(a,p)}=qWa,p), 3{p,W(G,p)} = pWMa,p). (2.12

Thus we may regarl\fV(q,p) as operator analogues of Dirac delta functions concentrated at
individual phase space points. In Ref. 19 they have been called phase point operators.
Turning to the Weyl map, it takes a general classical dynamical varialdejuare integrabje
functiona(q, p) on the classical phase space, to a correspongtiigert—Schmidg operatorA on
H:



012106-5 Wigner—Weyl isomorphism for quantum mechanics J. Math. Phys. 46, 012106 (2005)

a(qyp)—@(p’,q’):f J da dp a(q,p)e/ Y9
R JR

~ 1 i~ Al
HA=—f f dg’ dp’ a(p’,q)U(p")V(q")e P72, (2.13
2w )y R

The important property of this map is that traces of operatorg{ogo into integrals over
phase space,

THAB) = f f dq dp a(g,p) * b(a,p). (2.14
RJYR

One can immediately see that the relation betwa@np) andA is given by

A=2m J J dq dp a(q,p)W(g,p), (2.15
RJR

thus establishing that the Wigner and Weyl maps are inverses of one another. Indeed extending the
definition of the Wigner distributioni2.10) to a general operatdk on H, we have

a(q,p) = Tr(AW(q,p)). (2.1

It is this kind of isomorphism that we wish to develop whgis replaced by a compact simple Lie
groupG.

The angle-angular momentum ca¥®e now trace the changes which appear if we replace the
Cartesian variablg e R by an anglef e (-, ). The corresponding Hermitian operator is de-

noted by @, with eigenvalues@; its canonical conjugatel\?l has integer eigenvaluem

=0,%1,+2,....Thusme Z unlike the Cartesiap, soM is already quantized. The replacements
for Egs.(2.4) and(2.6) are

H=L2%sY = { NORES f do|y(0)]> < w}

WO =6y, (0)6)=3806"-6), 66)=60),

1 (™ .
¢m:<m|¢)=2—J doe ™y (9), (2.17)
77 —aT
lfl = EZ|¢/m|21

. 1
Mim) =mm), (fm)=——=—=€e"’.
V2

In place of the Heisenberg commutation relati@hl), we have only the exponentiated Weyl
version,

U(m) = exp(imb), V(6) = exp(—i al\7l),

UmV(6) = V(6)U(m)e™?. (2.18
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With the actions
(UM p)(6) =™ y(6),
M@ P)(0) = y[6-6')), (2.19

[06-6']=6-6 mod 2,

we have an irreducible system @6=L%(S'). The analogues of the displacement operaf@r3)
are now

U(mV(0)e M2 = v(g)U(m)e™??, (2.20

but here the exponents cannot be combined. They do however form a complete trace orthonormal
system,

Tr((U(m V(") U(M)V(6)) = 27 8mm 86 — 6). (2.21)

With this preparation we can turn to the definition of the Wigner distribution and the Weyl
map. For a given density operatpron 7, the former is

1 (7 1 1
W(G,m):—f d0’<0——0’|Z)|6+—0’>exp(im0’). (2.22
2w)_, 2 2

We see immediately that this is not a function on the classical phase $paée=S! X R, which

is a cylinder, but on a partially quantized spatex Z. We may regard this space as standing
somewhere in betweeR* S and the fully quantum mechanical Hilbert space and operator setup.
The marginals are properly reproduced in the sense that

fﬂ doW(6,m) ={m|p|m),

> W(8,m) = (6|p|6). (2.23

meZ

We can displayV(6,m) as

W(6,m) = Tr(pW(6,m)),

A ~ l m B ! _imn! !
W(6,m) :W(a,m)T:W > f de’ U(m')V(g')eme -im'(6+1/207) (2.24
mezY-m

and like their Cartesian counterparts these operators form a trace orthonormal system,

Tr(W(8',m)W(6,m)) = ia(e' — 0) Sy - (2.25

In a similar spirit, the Weyl map now takes any classical functiof, m) on S'x7 into an
operator on_?(S1),
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a(g,m —am’,e)= > d6 a(,m)eme’-m'o

meZ J -x

~ 1
HA—ZTE

meZ

F de’ a(m', 0)U(m )\V(§)e ™ ¢'2, (2.26)

Then the trace operation becomes, ag2ii4),

Tr(AB) = D " do a(6,m) * b(g,m). (2.27)

meZ J -x

Combining Eqs(2.24) and(2.26) we are able to get the analogue(f15),

A=27, . dé a6, m)W(6,m). (2.29

meZ J -7

In this way the similarities as well as important differences compared to the Cartesian case are
easily seen.

III. QUANTUM KINEMATICS IN THE LIE GROUP CASE AND THE WIGNER DISTRIBUTION

Let G be a(non-Abelian compact simple Lie group of order, with elementsy,g’,... and
composition lawg’,g—g’g. To set up the kinematics appropriate for a quantum system with
configuration spac®=G, it is simplest to begin with the Hilbert space of Schrédinger wave
functions. The normalized left and right invariant volume elementGois written as d. For
suitable functiond(g) on G we have the invariances and normalization condition

f dg f(g) = f dg (f(g'g) or f(gg) or f(g™),
G G

f dg=1. (3.1
G

Correspondingly we can introduce a Dirac delta functionGoharacterized by

f dg(8g'~'g) orasgg™) ordsgty) orsggh)f(g) =f(g). (3.2
G

Thus &(g) is a delta function concentrated at the identity eleneaG.
We take the Hilbert spac# for the quantum system to be made up of all complex square
integrable functions oiG:

H:m(e):{w(g) < o= | dg|w<g>|2<oo}. 33
G

A convenient basis of ideal vectojg can be introduced such that for a genégale H we may
write

W9 =), (d'lgy=dg'g™. (3.9

The notion of position coordinates is intrinsically captured by the commutative algebra rep-
resenting real valued smooth functiofy) on G, i.e., f e (G). To each such function we

associate a Hermitian multiplicative operafoon H:



012106-8 Mukunda et al. J. Math. Phys. 46, 012106 (2005)

fe ]—'(G)—H::f dg f(9)lg)X(dl,
G

(f)(@) = f(@) Q). (3.5

Thus all these operators commute with one another, being diagonal in the position description

Q) of |4).

To complete the kinematics and to obtain an irreducible system of operat@{snmmhave to
adjoin suitable momenta. Here we have two choices, corresponding to the left and right transla-
tions of G on itself by group action. We choose the former, and so define a family of unitary
operatorsV(g) to give the left regular representation Gf

V(@) =¥y g,

V(g)lg)=19'9). (3.6
They obey

V(g")V(g) =V(9'9),

V(g)'V(g) =1. (3.7

To identify their Hermitian generators, we introduce a bésisin the Lie algebraG of G. Using
the exponential mag— G, we write a generaj e G as

g=expa'e), (3.9

the sum orr being from 1 ton. The generatorglr of V(g) are then identified by

V(expa'e)) = exp—ia'J,). (3.9

These are Hermitian operators on the Hilbert spicebeying commutation relations involving
the structure constan@), of G:

[3.,3]=iC, 3. (3.10

On Schrodinger wave functiong(g) each:]r acts as a first order partial differential operator;
indeed if the(right invariany vector fields generating the left action Gfon itself are written as
X, then we have

J49) =iX, Q). (3.11)

The commutation relation®.10) are direct consequences of similar commutation relations among
the vector fieldsX;.

The analogue of the Cartesian Heisenberg—Weyl sysgty and (2.2) is now obtained by
setting together the following ingredients:

f1.f, e F(G) — f1‘?2:?2%1,

fe FG), g eG—V(g)iV(g)t=F, (3.12)
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(g =f(g' "9,

along with the representation propeity.7) for V(g). This is in the spirit of the unitary Weyl
system(2.2). In infinitesimal terms we have

[3, =i, (3.13

combined with(3.10. The spaceH is indeed irreducible with respect to the family of operators
{f,V(+)} or equivalently{f,J,}.

We can express functions of position also via unitary operators in the Weyl spirit as follows:
for each realf e F(G), we define the unitary operattk(f) by

u(f)=e" (U y)(g) ="V g). (3.14
It is then easy to see that we have the relations

(U(HV(g") ) (g) = €"9y(g'1g),
(V(@)U(Fy)(g) =€ Iy(g'g), (3.15

(UHV(G)(V(G)U(F)'y)(g) = €"0T10 0y g),

which is in the spirit of Eqs(2.2) and (2.18), except thatf is not restricted to be linear in any
coordinate variables.

We see here that unlike in thedimensional Cartesian case the canonical momenta are a
noncommutative system. Therefore the analogue or generalization of the single momentum eigen-
state|p) in the Cartesian situation will turn out to be a generally multidimensional Hermitian
irreducible representation ¢8.10), namely the generators of some unitary irreducible represen-
tation (UIR) of G. We will see this in detail as we proceed.

For completeness we should mention the operators giving the right regular representation of

G. These are, sa;)?{(g), defined by and obeying

V(g ¥)(9) = ¥gg),

V(g)lg)=lgg’ ™,
o (3.16
V(g')V(9) =V(g'0),

V(g')V(g) = V(g)V(g").

However as is well known their generatdksare determined bﬁr and the matriceéD;(g)) of the
adjoint representation db, by

3= -39 (3.17

Therefore it suffices to regard the collection of opera{dr¥(-)} as providing the replacement for
the Heisenberg—Weyl system in the present case.

Complementary to the position bagig for  is a momentum basis. This can be set up using
the Peter—Weyl theorem involving all the UIR’s &. We denote the various UIR’s by with
dimensionN;; we label rows and columns within theh UIR by magnetic quantum numbaersn.
Thus the unitary matrix representiggs G in the jth UIR is
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g— (D){9). (3.18

In general each gf,m,nis a collection of several independent discrete quantum numbers, and
there is a freedom of unitary changes in the choiceamph. In addition to unitarity and the
composition law,

> Dii(9)* DL, (9) = Sy
n

> DL{(g")D! (9)=D! (g'0), (3.19

we have orthogonality and completeness properties,

f dg Dan(g)DL;rnr(g) * = 5jj’5mm5nn’/Nj,
G

> N,DL{(9)Dh{(g)* = 8g™'g'). (3.20

jmn

Then a simultaneous complete reduction of both representaMOhSV(-) of G is achieved by
passing to a new orthonormal ba§isin) for . Its definition and basic properties are

ljmn) = N,-l’zf dg D!,{(9)|9),
G

G0 im0 = 8 Sm
' (3.21)
V(@)limn) =X D), (g lim'm),
m/

V(g)ljimny =X D!, (g)|imn’).

Therefore injmn) the indexn counts the multiplicity of occurrence of thth UIR in the reduction
of V(-) andm performs a similar function in the reduction ﬁt-).

We now regard the sets NJZ states{|jmn)} for each fixedj as momentum eigenstates in the
present context. This means that thelimensional real momentum eigenvalpein Cartesian
quantum mechanics is now replaced by a collectiofdifcretg quantum numbergmn. A vector
| € H with wave functiony(g) is given in the momentum description by a set of expansion
coefficientsijmn,

V& H— G = (i) = NP2 f dg Dl (@) * g,
G

4% = 2 [l (3.22

jmn
A normalized|+) then determines two complementary probability distributidpég)|?> on G and
|#mnl? ON MOMentum space.

In this situation gprovisional and overcomplet&Vigner distribution\7V(g;jmn m'n’) can be
defined for eachy) e H (or for any mixed statep as wel). (Here we depart slightly from the
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notation in Ref. 21, so that our later expressions are more conttiseansforms in a reasonable

manner wheny) is acted upon by/(-) or V(-); and it reproduces in a simple and direct way the
two probability distributions determined Hy»), as marginals. We give only the latter property
here,

> W(g;jmn mn = |¢(g)|?,

jmn

J dg Wg;imn n'n’) = ¢y Binn- (3.23
G

The right-hand side of the second relation is a natural generalizatigy;f? to allow for
freedom in the choice of labets, n within each UIR]j. The expression for this Wigner distribution
involves a functiors, G X G— G obeying certain conditions and is

W(g;jmn mn’) = N; f dg’ f dg” ¥(g")(g') * D}, (g") * D) g 7's(g',g")).
G G
(3.29
Reality in the Cartesian or single angle-angular momentum cases is replaced here by Hermiticity,
\7V(g;jmn mn’)* = \7V(g;jm’n’ mn). (3.2

The conditions ors(g’,g") to ensure that all the above properties are secured are

g/'gll e G*) S(g/,g//) =S(gll’g/) e G,
$(019'92,919"92) =91 S(9',9")92, (3.26

s(g9'.9')=¢g".
We can simplify the problem of constructing such a function by exploiting the second of these
relations to write
s(9'.9") =g's(e,g''g") = g'so(9' '), (3.27)
so the functionsy(g) of a single group element must satisfy

So(e) =e,
S0 =g7s0(9) =s0(9)g 7, (3.29

(9’99 D=9 (@9’

The solution proposed in Ref. 21 is to taggg) to be the midpoint along the geodesic from the
identity ee G to g. These geodesics are determined starting from the invariant Cartan—Killing
metric onG, and have the necessary behaviors under left and right group actions to ensure that all
of Egs.(3.26) and(3.28 are obeyed. In the exponential notation of E818) we have

soexpa’ ) =exp3a €), (3.29

since it is true that geodesics passing through the identity are one parameter subgroups. With this
explicit construction we have the additional relation
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(@) =597,

S(9) o(9) = 9. (3.30

Thussy(g) is the(almost everywhere unigiisquare root of ands(g’,g”) is a kind of symmetric
square root ofy’ andg’.

We shall explore the properties ﬁi(g;jmn m'n’) in the next section, especially the sense in
which it contains information aboli/)(#{ in an overcomplete manner. This will then lead to the
Wigner—Weyl isomorphism for quantum mechanics oftc@mpact simplgLie group.

IV. THE WIGNER-WEYL ISOMORPHISM IN THE LIE GROUP CASE

The definition(3.24) can be immediately extended to associate an okprﬁg;jmn mn’)
with every linear operatoA on H (of Hilbert—-Schmidt class In terms of the integral kernel
(g"|Alg’y of A we have

Wi(g;jmn nfn’) =N f dg’ f dg(g’|Alg" D), (g") * DL(g")8g7is(g',g"). (4.1
G G

It is indeed the case that this expression describes or deterrﬂirmsnpletely, however this
happens in an overcomplete manner. There are certain linear relations obejgthymn m'n’)
which have amA independent form. We now obtain these relations, then proceed to construct a

simpler expression which contains complete information aBowithout redundancy.
The Dirac delta function in the integral on the right-hand side of(Edq) means that the only
contributions to the integral are from the points where

s(g’,g") =g. (4.2
Writing this as

(g’ g =g'"g, (4.3

and then using Eq3.30, we see that, say, in thgf integration the delta function picks out the
single point determined by

gr—lgrr — (gr—lg)Z,

g'=99 9. (4.4)

This means that(g*s(g’,g")) is some Jacobian factor time¥%g”’ ‘gg’'~*g). We are therefore
permitted to use this value f@" elsewhere in the integrand, so

Wia(g;jmn nin’) =N f dg’ f dg’(gg *g/Alg’)D! . (g9’ g) * D!, (g")&(g7s(g’,g")).
G G

(4.9

Transferring theg-dependent representation matrices from the right-hand side to the left-hand side
and using unitarity, we get
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> D@D (@Wa(G; jmn min’) = N f dg’ J dg” 8(g7's(g’.g"))
m'n’ G G

x(gg' 'glAlg"hD!, (g)DL(g). (4.6

It is now clear we have symmetry of the expression on the left-hand side under the simultaneous
interchangesm«n”, n—m’, a statement independent @&. This is the sense in which

\7v;\(g;jmn m'n’) contains information abow in an overcomplete manner, and this happens only
whenG is non-Abelian.

Taking advantage of this, we now associatéitthe simpler quantity

Wa(g:jmm’) = N* X Wi(g; jmn nin) = f dg’ f dg’(g’|Alg")D), (9’ Y &g *s(g’,g")).
n G G
(4.7

We shall call this the Weyl symbol corresponding to the oper&td’rhe passagé—n&’r results in

Wai(g;jmm’) = Wa(g;jm’'m) * . (4.8

It is easy to obtain the transformation properties of the Weyl symbol under conjugatf@rby)f
either the left or the right regular representation,

A’ =V(go)AV(go) ™,

Wi/ (@1 mm) = 3 Dl (60Dl (o) * Wa(Go g jmamy),
mymy
(4.9)
A" =V(go)AV(go) ™,

War(g; jmm’) = W(ggo; jmm’).

Next we can verify that i\ andB are any two Hilbert—Schmidt operators #f) then T(Aé) can
be simply expressed in terms of their Weyl symbols,

THAB) = 2 N, f dg WAa(g; imm’)We(g; jm'm). (4.10
- G

jmm

The proof exploits the completeness relatior(3r20) and the propertie€3.26) of s(g’,g"). This
key result proves thaf is indeed completely determined by its Weyl symbAlis certainly

determined by the values of (‘liré) for all B, and the latter are known once the Weyl symbols are
known.

Before expressing the Weyl symbol Afin a form analogous to E@2.16), we give examples
for some simple choices
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A Wa(g;jmm’)
f= fG dg f(9)lg)gl H(9) O
V(go) Dl (G")
V(go) D} (9597 4.1
V(go) f(So(90)9) DYy (G0 )
V(gy)t (s0(g0) *9)D (959

We shall comment later on the structure of these Weyl symbols. However it is already instruc-
tive to compare these results with the Cartesian situation

A W(q,p)
f=1(G) f(a)
V(q') exp(—ipq’)
V(@) = f@V(a) f(a+a'/2)exp-ipq’) (4.12

V(@) f(@ f(q-q'/2)exp(-ipq’)
Now we turn to the problem of expressing the Weyl symbof\dh the form
Wi(g;imm’) = Tr(AW(g; jm) (4.13
for a suitable operatd?\/(g;jmm’). This would be the analogue W(q,p) in Eq.(2.10. Since the
kernel(g"|A|g’) is quite general, Eq4.13 and Eq.(4.7) imply
(@'|W(g:jmm)|g") = D}, (9'g" ) ag™s(g’ ") = D}y (90" g (9" ).
(4.14

We shall synthesizkgv(g;jmm’) in steps. We begin by defining a family of commuting operators
U(jmn) in the manner of Eq(3.5), all of them diagonal in the position basis,

(U(MN)$)(9) = Dh(Q)¥(). (4.15
These are analogous to the Cartedidp’), labeled by a momentum eigenvaljmen, functions of
position alone. They are unitary in the matrix sense,

> U(imn)U(mn’) = X U(jinm)fu(n’m) = 8,.,I. (4.16)

These operators allow us to express the rﬁaﬂ-‘(G)—ﬁ of Eq. (3.5 more explicitly as
follows:

f(9) = 2 fimnDhd(@) O F= X fimU(jmn). (4.17
jmn jmn
Upon conjugation by/(g) we have

V(g U(jmn)V(g) = >, D _(g)u(jm’n). (4.18

m

Combining Eqgs(3.16), (3.20), and(4.15 we easily obtain the trace orthonormality property
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Tr((U(G'm'n)V(g") TUGmMNV(@)) = N6,/ S mband@ g, (4.19

analogous to Eqg2.7) and(2.5). The action ofU(j’'m’n’) on the momentum eigenstatgsn)
can be worked out; it involves the Clebsch—Gordan coefficients for the reduction of direct products
of two general UIR’s ofG and reads

uG'm'n’)|jmny= > o C’m”m;,*CL'r'mA,

j"m”n”)\ J

i"mm’y. (4.20

Here\ is a multiplicity index keeping track of the possibly multiple occurrences of the DIR
in the reduction of the direct produﬂj' X DI. The significance of this relation is similar in spirit
to the statement in the Cartesian case that’')=explip’d) generates a translation i) in other
words that in the momentum descriptigns given by the differential operatofd/dp). The result
(4.20 however involves discrete labels sinGds compact, unlike continuous Cartesian variables,
and incorporates non-Abelianness as well. Therefore translating the momemmunby the
amountj'm’'n’ yields several final momen§&m’n” according to the contents of the direct product
DI’ X DI of UIR’s of G. ‘

Now multiply both sides of Eq(4.14) by D‘nﬁlmi(g) and integrate with respect @ this is

Fourier transformation with respect ¢pand gives

(d'] f dg DJl (QW(g;jmm)|g"y =D}, (g'g" 1)D"nim(s()(szl”sii"1)9’). (4.21)

Now perform an inverse Fourier transformation with respect to the monjemta to get
2 NDp (9 * (9| J dg D2 ., (@W(g;imm)|g")
jmm’ G !

=D}! m(S0(9'9" 9 3(0:9'9" ) = Djnim (so(97M)g") (g:9"g" ™)

=(0'l0:0")D} 1y (50(019") = X (0’ [UGamem) V(G0 gD (So(G ). (4.22

my

Comparing the two sides and peeling ¢ff| and|g”) gives

E N} (90) * J dg Dy (/W(g;jmn) = EDmlmz (091N U(1mmpV(gy).

(4.23

Then Fourier inversion twice yields the result

W(g;jmm)= 3 N; f dgy U(jamomy)V(gy)Dh 1 (9)DR, o (07'0(01 ) (4.29)
jamimy G

This may be compared in every detail with the Cartesian result ifZE#0), the correspondence
of arguments and integration/summation variableg@nsluding the factors representing momen-
tum eigenfunctions

q—g, p—jmm, q —g;, P —jimm,

e Dl (g, €D DI (g7so(0rY). (4.25

Giving due attention to the new matrix features, the correspondence is quite remarkable.
Combining Eqs(3.28 and(4.14) we obtain the relation
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W(g;jmn)" = W(g; jnm). (4.26)

Similarly combining Eqs(4.24) and(4.19 and carrying out quite elementary operations leads to
analogues to the Cartesian relati@@sll) and(2.15 in the forms

Tr(W(g’;j'm’n’)'W(g; jmn)) = N33 Sy O 0G0,

A= N, f dg Wa(g; jnm)W(g; jmn). (4.27)
G

jmn

We may thus conclude that we have succeeded in setting up a Wigner—Weyl isomorphism for
guantum mechanics on a compact simple Lie group with reasonable properties.

V. THE STAR PRODUCT FOR WEYL SYMBOLS

In this section we sketch the derivation of the expression for noncommutative operator mul-
tiplication in terms of the corresponding Weyl symbols, relegating some details to the Appendix.
Thus, for two operatoré. and B we seek an expression for the Weyl symbolA& in terms of
those ofA andB in the form

Wag(g;jmn) = (Wa * Wg)(g; jmn). (5.9
From Eq.(4.13 we have

(W * Wa)(g; jmn) = Tr(ABW(g; jmn)), (5.2)

so using Eq(4.27) for A as well as forB we have

(Wax We)(g:jmn) = X Nj’Nj”f dg”J dg” Wa(g":j"n"m")Wa(g';j'n'm’)
jrmrn/ G G
J'Hrr(!nll
X Tr(W(g”;j”M’n”)W(g’ i ’m’n’)W(g;jmn)). (5.3

We therefore need to compute the trace of the product of Wreewhich is a nonlocal integral
kernel defining th&associative but noncommutatjvstar product on the left-hand side. The two
ingredients for this calculation are expressions for the produgmn)V(g) in terms of

\7V(g’ ;j'm’n’), and for the product(j’'m’'n")V(g’)U(jmn)V(g) in terms of similar product&V.
These are

UGmnV(g= > N; D). (g)* f dg’ Dl (So(@)g)W(G';j'm'n’), (5.49
G

jrmrnr

UG'm ) V(@HU(mnV(g) = > cb 1 Dl(g HuG mm)V(g'g).  (5.4b)

jrrmrrnuk

The derivations are given in the Appendix, and @symbol on the right-hand side in the second

equation is a sum of products of Clebsch—-Gordan coefficients of the type occurring (. Eiy.
Starting from Eq(4.24) and using Eq(5.4b we have for the product of twavs,
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W(g';j’m'n")W(g;jmn)

= 2 NN f dgo f dgg D} (9o) Dl (90)
foMo.no G G
ioméns
X D19y (97'50(05) Dy (8 so(85 ™) U igmeng) V(g U omono) V(o)

= - N., J(/) i ]8 Yl i’ ’

) J’o"%oko NJON]OCméné k%no m(éngfe dgofG dgo Dmn(gO)Dm,n’(g())

o

/U]

0 0
X DR (0™ DIo (0750(06 DY 1, (9 "s(05 ™) X U(EmEngVigago). (5.5
If here we use Eq(5.49 and then Eq(4.27) we obtain for the kernel in Eq5.3),
Tr(W(g” ; j”M’n”)W(g’ pm’ n’)W(g; jmn))

= 2 NNl i e f dgo f g Dhnr(G0) Dl (96) Dy (G0T0) *
ko 0JG G

joMgNg Yo mgng oMo

iomér

iomono

X DI (001D (07 50(00 ") Dy (0" 50(G5 ™)) (56(0580)9). (5.6

The star product of Eq5.3) is then obtained by inserting this integral kernel on the right-hand

side.
A slightly simpler expression—which amounts to trading four of Bxunctions for Dirac

delta functions—results from direct use of Eq.14),
TrWg"; j"m'n")W(g' ;' m'n’)W(g; jmn)

= f dgo J dgy f dg(dolW(G"; "m"n") | go)(gel WG’ ;5 M’ n’) g (g WIg; jmin)|go)
G G G

= f dgo J dag f dgy D rr(90gh DY (9605 ™
G G G

X DL, (958D 89" s(g0,90)) 8(g' ~*s(g6,95)) (g s(g5,Go)) - (5.7

These expressions for the star product show an unavoidable complexity for general compact
non-AbelianG. In the one-dimensional Abeliagbut non-CartesiancaseQ=5%, there are some
simplifications. Referring to Sec. Il, we have the rule for Weyl symbols given by(ZEg85 and

(2.28),
a(6;m) = THAW(6;m)),

A=27> ! dé a(g;mW(e;m). (5.9)

meZ J —-m

The star product then appears as
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(axb)(em= > Wd&”fw de’ TrOW(8"; m")W(8': m")W(8;m)a(d”;m"b(8':m'),
m'm'ez Y -m -

A ~ ~ 1 m m . ’ !
Tr(W(H’;n’(’)W(e’;m’)W(e;m)):ﬁ > f dep f dfpe’? Mol Mo%exd i (mfy — M6
mo,m('JeZ - -
+m' ) —my0’ + (Mg +mp) 8" —m'(6y+ 6)))]. (5.9

This expression for the kernel results from E§.6) if we first drop the magnetic quantum
numbersm,n,m’,n’,m",n", my, Ny, Ky, My, Ny, My, Ng; then set the dimensionalitiéd,, Njé equal
to unity; next make the replacemerjts-m,j’ —m’,j” —m",jo— My, jo— Mgy, do— 6o, 95— O,
and use for theC coefficient the Kronecker deltajg,momé. Even with some simplifications, the
kernel in Eq.(5.9) remains nonlocal because @mong other thingghe occurrence of half-angles
in the exponent.

VI. DISCUSSION AND CONCLUDING REMARKS

The characteristic feature revealed by our analysis is that for quantum mechanics on a Lie
group G as configuration space, the concept of canonical momentum is a collection of nhoncom-
muting operatorg,, in fact constituting the Lie algebra of the left regular representatio@ oh
L2(G). This in itself is known, but it results in the analogues of momentum eigenvalue being a set
of discrete labelgmn, and the single Cartesian momentum eigenvelgipbeing replaced by a
multidimensional set of vector§jmn)}. Other consequences of this non-Abelianness should be
noted. One needs to work with both overcomplete and with complete nonredundant Weyl symbols
for general operator,é: the former are useful for reproducing in a simple manner the two comple-
mentary marginal probability distributions associated with a pure or mixed quantum state from its
Wigner distribution as shown in E¢3.23); while the latter lead to the Wigner—Weyl isomorphism
in a reasonable manner.

It is interesting that the Weyl symboW/,(g; jmm’) are not complex valued functions on the
classical phase spade* G. They may be more compactly viewed as follows. Whereas by the
Peter—Weyl theorem the Hilbert spa¢e=L%G) carries each UIRDU)(.) of G as often as its
dimensionN;, the structure of Eq4.7) leads us to define a smaller Hilbert spa¢gcarrying each
UIR of G exactly once:

Ho=2> & HY,
j

HY =sp|jm)}, dimHD =N;, (6.1)

(jlm’“m): (Sj’jfsm’mv

with H carrying the UIRDY(-) of G. Then the Weyl symbol of a general operaty
Wai(g;jmm’), may be regarded as a function@é& G and an operator of,. This is evident from

the examples of Weyl symbols given in E¢.11); in the Cartesian case in E@.12) such features

are of course absent. This can be understood also from the following point of view. In the normal
quantum description an operataron H=L2(G) can be given via its kernély’|A|g’), or via its

complementary diagonal plus off-diagonal matrix eleme(mtm’n’|A|jmn>. If in the latter we
trade half of the labels for a dependence on a group elemewe arrive at the Weyl symbol
Wi(g;jmm’) viewed as a block diagonal operator #fg with simultaneously a dependence @n
Thus while the Wigner—-Weyl isomorphism does not work directly with the true classical phase
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spaceT* G, it seems to use what may be called a nhoncommutative cotangent space, standing
somewhere betweef* G and operators 0h%(G).

Nevertheless the link to functions on the classical phase spaGecan be established, as we
will see below.

We may use the phrase “semiquantized phase space” for the space on which the Weyl symbols

Wai(g; jmn) of operatorsA are defined. It is to be understood that this phrase includes the restric-
tion that only(g-dependentblock-diagonal operators dH, are encountered. This may be viewed

as a superselection rule. In detail, given an operétcom H=L?G), we associate with it the
g-dependent block-diagonal operator,

A(Q) = 2 X VNWi(g; jmn)|jm)(jn], (6.2

j mn

acting onH,, and we then have the connection

Try,(AB) = f dg Tr, (A(Q)B(Q)). 6.3
G

The Weyl symboﬂ(g) is simpler tharA both in that it acts on the much smaller Hilbert spatg
and in that it is block diagonal.

To finally establish the link to suitable functions on the classical phase JgaBewe exploit
both the fact that the representation®fon H, has a multiplicity-free reduction into UIR’s, and

the fact thatzx(g) is block diagonal. Let us denote the generatorsGofon H, by :lﬁo), r

=1,2,...n. The Weyl symbolA(g) may initially be written as the direct sum of symba!gg)
acting within each subspadg! in H,,

A =2 @ Alg),
J

A(@) = 2 N;Wi(g; jmn) jm)(jn]. (6.4
m,n
Next, using the irreducibility o{f]io)} acting onH", we can expan&j(g) uniquely as a sum of
symmetrized polynomials idio),

A= X X a, @DE00-- 30,

N=0,1,... ry,fo,. Iy

"p(N

PUSON ~ . 1 ~ ~ .
O3 I= 5 3 30,30 9

Here the upper limit oN is determined by the UIIE)J; Sy is the permutation group dd symbols;
and the superscriffj) denotes the restriction ti!). The coefficients, _ (g;j) arec-number
quantities symmetric imq, ... ,ry. If we now replace theij dependences by dependences on the

independent mutually commuting Casimir operaﬁbnsf G, themselves symmetric homogeneous
polynomials inJEO), we can us€6.5) in (6.4) and write

AQ=2 2 a5 @CHIY I (6.6

N=0rq,...MN

This expression for the Weyl symbTél(g) of A can now be set into one-to-one correspondence
with the classical phase space function
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a(g;d) = E E A, B (RGN LR (6.7)
N=0ry,..
where the commuting classical variablbsare the canonical momentum coordinates of the clas-
sical phase spack* G, while C are invarian{Casimipy homogeneous polynomials in them. Thus
we have the two-stage sequence of correspondences

AonH= LAG) - Z(g) = block-diagonal operator ol < a(g;J) e A(T* G). (6.9

The importance of the multiplicity-free nature of the representatio® @n H,, and the super-
selection rule, is evident. In contrast to the Cartesian case in Sec. ll, the appearance of the
semiquantized phase space as an intermediate step is to be noted. We hope to return to this aspect
in a future publication.

APPENDIX

We indicate here the derivations of E@5.4g and(5.4b). For Eq.(5.49, we begin with Eq.
(4.23) and use the unitarity of thB-matrices to shift théd-matrix on the right-hand side to the
left-hand side. This immediately gives E&.49. For Eq.(5.4b) we begin with the decomposition
of the product of twaJ’s; from Eg. (4.15), using Eq.(A29) in Ref. 21,

U('m'n)U(jmnlg) =Dl (@Dh (@l = X Cl, L ek 1Dk L(@le. (A1)
!In,{/ H)\
Here theC's are the usual Clebsch—Gordan coefficients for the decomposition of the direct product
DI’ x DI of two UIR's into UIR's DI", with a multiplicity index \ to keep track of multiple
occurrences of a giveDJ'". If we introduce the short-hand notation

C:nn n! ;‘nn rn'lnH = E Cm! m rnl}l\ C:-ll f,] :nlN ) (AZ)
we get from(Al):
uG'm'n)U(mn= > cb 0T ). (A3)
Hn,.(! U

We can now tackle the product of four factors in E5.4b). First using Eqs(3.7) and(4.18 and
then using(A3) above gives

UG’ m'n)V(g")U(jmn)V(g) = U(j'm'n") X, D(g' HU(jkn)V(g'g)
k

S D@ ICh ko by U MIOV(G'G),  (A4)

j "m'n"k

which is Eq.(5.4D).

LE. P. Wigner, Phys. Revi0, 749(1932); for a comprehensive review see M. Hillery, R. F. O'Connell, M. O. Scully, and
E. P. Wigner, Phys. Repl06 121(1984); V. I. Tatarskii, Sov. Phys. Usp26, 311(1983); and also Y. S. Kim and M.
E. Noz, Phase Space Picture of Quantum Mechar(idfrld Scientific, Singapore, 1991W. P. Schleich,Quantum
Optics in Phase Spaa&Viley-VCH, Weinheim, 2001

2H. Weyl, Z. Phys.46, 1 (1927); The Theory of Groups and Quantum Mechan@sver, New York, 1950

%J.E. Moyal, Proc. Cambridge Philos. Sot5, 99 (1949; H. Groenewold, PhysiceBAmsterdam 12, 405 (1946.

“For an elementary introduction to deformation quantization see A. C. Hirshfeld and P. Herselder, Am. JPB2T.
(2002; J. Hancock, M. A. Walton, and B. Wynder, Eur. J. Phg§, 525(2004).

5R. L. Stratonovich, Zh. Eksp. Teor. Fi&1, 1012(1956 [Sov. Phys. JETR4, 891 (1957)].

5G. s. Agarwal, Phys. Rev. R4, 2889(1981); 47, 4608(1993; J. P. Dowling, G. S. Agarwal, and W. P. Schleidbid.
49, 4101(1994.

3. C. Varilly and J. M. Gracia-Bondia, Ann. Physl.Y.) 190, 107 (1989.



012106-21  Wigner-Weyl isomorphism for quantum mechanics J. Math. Phys. 46, 012106 (2005)

8K. B. Wolf, Opt. Commun.132, 343(1996.

°D. M. Kaplan and G. C. Summerfield, Phys. Ré\87, 639 (1969.

0. Fronsdal, Rep. Math. Phyd5, 111 (1979.

¢, Moreno and P. Ortega-Navarro, Lett. Math. Phys181(1983.

2R, Gilmore, inLecture Notes in Physic¥ol. 278, edited by Y. S. Kim and W. W. Zacha(@pringer, Berlin, 1985 p.
211; W.-M. Zhang, D. H. Feng, and R. Gilmore, Rev. Mod. Ph§2. 867 (1990.

13U. Leonhardt, Phys. Rev. Leti74, 4101(1995; Phys. Rev. A53, 2998(1996).

¢, Brif and A. Mann, J. Phys. A31, L9 (1998; Phys. Rev. A59, 971(1999.

15N. M. Atakishiyev, S. M. Chumakov, and K. B. Wolf, J. Math. Phya9, 6247(1998; N. M. Nieto, N. M. Atakishiyev,
S. M. Chumakov, and K. B. Wolf, J. Phys. A6, 3875(1998); S. T. Ali, N. M. Atakishiyev, S. M. Chumakov, and K.
B. Wolf, Ann. Henri Poincarel, 685(2000; M. A. Alonso, G. S. Pogosyan, and K. B. Wolf, J. Math. Phy&, 5857
(2002.

1A, J. Bracken, D. Ellinas, and J. G. Wood, J. Phys38, L297 (2003.

YN. Mukunda, Pramandyl, 1 (1978.

18N, Mukunda, Am. J. Phys47, 182(1979.

19, K. Wootters, Ann. Phys(N.Y.) 176, 1 (1987).

2\, K. Wootters, IBM J. Res. Dev48, 99 (2003; quant-ph/04060322004).

2N, Mukunda, Arvind, S. Chaturvedi, and R. Simon, J. Math. PH&.114 (2004).

22N, Mukunda, S. Chaturvedi, and R. Simon, Phys. Lett321, 160 (2004).



JOURNAL OF MATHEMATICAL PHYSICS46, 012107(2005

Schrédinger problems for surfaces of revolution—the
finite cylinder as a test example
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A set of ordinary differential equations is derived employing the method of differ-
entiable forms so as to describe the quantum mechanics of a particle constrained to
move on a general two-dimensional surface of revolution. Eigenvalues and eigen-
states are calculated quasianalytically in the case of a finite cyliffidée along

the axiy and compared with the eigenvalues and eigenstates of a full three-
dimensional Schrédinger problem corresponding to a hollow cylinder in the limit
where the inner and outer radii approach each other. Good agreement between the
two models is obtained for a relative difference less than 20% in inner and outer
radii. © 2005 American Institute of PhysiceEDOI: 10.1063/1.1829376

I. INTRODUCTION

With the recent advances in nanotechnoldgy, is now possible to grow quasi-two-
dimensional surfaces of almost arbitrary shape where quantum effects play a maj?oEveIe.
amples include single crystal NbsS&6bius strips3, spherical CdSe-zZnS core-shell quantum
dots? and Si nanowire and nanoribbon transistbue to the confinement of the quantum-
mechanical particle to a two-dimensional surface, differential geometry methods offer certain
advantages above the usual three-dimensional treatment of Schrddinger-equation problems in
determining eigenvalues and eigenstates. Several publications have appeared on the constrainment
of quantum-mechanical particléwith applications in, e.g., standard Schrédinger equation prob-
lems and relativistic Dirac equation problents a two-dimensional surface since the original
works by Jensen and Koppe, da C8Staclarified that physical properties of two-dimensional
systems in general depend on the surrounding three-dimensional space.

In the present work, we derive the three-dimensional Schrédinger equation in curvilinear
coordinatesu?, u?, u® with u3=0 defining the two-dimensional surface to which the particle is
confined. The resulting representation of the Schrodinger equatioh i, u can be separated
into three ordinary differential equatiosne for eachl', i=1,2,3 for any surface of revolution.

In doing this, simple equations are obtained relevant to the more general case of surfaces than
those considered in Ref. 9 where the surface was restricted to obey the retafion wherez, r
are the axial and radial cylinder coordinates, respectively.

Next, we solve the problem of a particle confined to the surface of a finite cylinder and
determine eigenvalues and eigenstates analytically. The corresponding eigenvalues and eigenstates
of a hollow cylinder in three dimensions is also solved quasianalytically. In particular, we show
that three-dimensional results for a thin hollow cylinder agree very well with results obtained by
performing a quasi-two-dimensional differential form analysis of the Schrédinger equation.

Il. SCHRODINGER'’s EQUATION IN CURVED COORDINATES

Let (ut,u?,u®) be normal coordinatesn R2 with respect to a surface embedded i3, i.e.,
ut,u? are coordinates on the surface amdis the distance to the surface. A simple calculation

0022-2488/2005/46(1)/012107/6/$22.50 46, 012107-1 © 2005 American Institute of Physics
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shows that the volume elementlit is F\g du® du? du?, whereF=1-2M ud+K(ud?, andM and
K denote the mean and Gaussian curvature, respectively. If vye=lefE ¢, then we can write the
Laplacian inR® acting ony as

VFARsr= (Mg + WA, + (UD)2Ay+ -+ )y + By, (1)
whereA,, k=0,1,2,... areoperators or®. In particular,
Ag=As +(M?-K), (2

see Ref. 7, wherdys is the Laplace—Beltrami operator &h
As = -1/2 aBnli2 9 — ~aB ﬁé'&g ap 3
3 =0 0990 =0"0,0p 2 g +3pg™" |y, )

and d,=d/ u®, g,z are the components of the metric tengpr.defg, ] and[g**]=[g,]™* (see
Ref. 6.

We now specialize to asurface of revolution It can be parametrized as(u®,u?)
=(r(ub)cosu?,r(ub)sinu?,z(ut)), where(r(u),z(u)) is a curve in thexz plane. The metric tensor
is given by g;;=r'(uh)?+2z'(uh)?, g,,=r(ut)?, andg;,=0,;=0, and the principal curvatures are
k1=k(U)=(r'Z"=2'r")[(r'?+2'%)%2 and k,=7' Ir\r'?+7'?, see Ref. 10. The mean and Gaussian
curvature are(k;+ k) and kyk,, respectively, sdM2—K=3(x;,— k,)? and

Ag=

(92 (92 r’ r't"+72'7 1 1 r'z'-z'v" 7 2
2 : 2 _g 2 2y (12 2291t 2 2 2 2 ) (4)
r's+z'< r r(r's+z'¢) ('“+7z9 A4r'c+7'°\ r'<+7 r

If the curve(r(u'),z(ub)) is parametrized by arc length, i.e!?+z'2=1, the expression simplifies
to

Ao=df +

ol

rro 1 z\?
— =+ —\r' =2 = — . 5
et 4( r) (5)

For the sake of completeness, let us next write the Schrédinger equation in curved coordinates
for a particle confined to the surfa¢e',u?,u®=0),

_ h2
Sy ot JB) x(U, 12, u°) + V(U U2, UP) (U, U2, U%) = Ex(u',u?,ud), (6)
where the Laplacian is as given by E&), and

V(UL U2, 10) = {0 if {u] = €3, )
o otherwise.
For a surface of revolution, the Schrédinger equation can be written as three ordinary differential
equations using the separation-of-variables method. Hence, assunying,u?,u’)
= x2(uh) x2(U?) x3(u®) and inserting into Eq(6) leads to[by use of the more general expression for
Ay given by Eqgs(4) and(7)]

r! r't"+72'7 1/r'Z2' -Z'r" z 2 c
(U (22 (8o,

T r/2_‘_212 4 r/2_|_212 r
2 —
X2+ Cox2=0, (9)

2m(E - V(u®
Fxa+ (% +01>X3: 0. (10)
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I1l. ENERGY SPECTRUM OF A PARTICLE CONFINED TO THE SURFACE OF A FINITE
CYLINDER

In the following, the possible energy eigenvalues of a particle obeying Schrédinger’s equation
confined to the surface of a finite cylinder with radiRend lengthL will be determined. First, a
parametrization of the cylinder surface is defined by

(r(uy),z(uy)=(Rub, o=sul<L. (11
Inserting this into Eqs(8)«10) immediately yields

1 o
a%x1+<ﬁ_¥_cl>)(1:oa (12
Fx2+ Cox2=0, (13)
2m
3§X3+<?E+01>X3:O, (14)

wherec;, ¢, are separation constants agp@i, u?, u) = y;(ub) xo(U?) x3(ud).
Consider first the equation io?. The solution satisfying the periodic conditigp,(27)
=x2(0), is

Yo(U?) = exp(xiyc,u?) = exglilu?), (15)

wherel is an integerpositive or negativg i.e.,

c, =12 (16)

Next, c; is determined from Eq(12) by imposing the boundary conditions

x1(ut=0) = yy(u*=L) =0. 17

The corresponding solution is

1 k
Xl(ul):sin(\/—%—Cﬁﬁul) :sin(TWu1>, k=1,2,3,..., (18)

C__(k_’77>2_2+i__(k_77)2_£+i (19)
oL R 4R2- \ L R? 4R

The remaining equation im® can finally be solved—subject to the boundary conditions
XUt u?, u=+¢5)=0,

X3(u3):sin<2—:(u3—s3)>, n=1,2,3,... . (20
3

In other words, the energy spectrum is found from Ead), (19), and(20) and reads

E —h—2[<”—”)2+<k—”)2+ﬁ-i} (1)
P~ om| \ 2¢; L R2 4R?|’

wheren=1,2,3,...k=1,2,3,..., and=0,1,2,3,... arguantum indices.
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IV. ENERGY SPECTRUM OF A PARTICLE CONFINED TO A HOLLOW CYLINDER—
THREE-DIMENSIONAL TREATMENT

The Schrodinger equation in cylindrical coordinates reads

&21,/1 1oy, 1a2¢ s

2
aH% ror r (902 P +r(ny=0, (22)

where

2
k()= h—T(E -V(r)), 23

for a potential depending on the radial coordinatnly. Here,V(r) is a step potential confining
the particle to the hollow cylinder, i.e.,

0 fR=<r=<R,,
V(r) ={ A . Ro (24)
o« otherwise,
andR, (R,) is the inner(oute radius of the hollow cylinder. A separable solution in the region

R =<r=R, is sought in the form

Y(r,0,2) = p(r)O(0)Z(2), (29
where
22—; =-kKZ, (26)
?127? =-1°0, (27
r2%+r$+(kﬁ1r2—|2)p=0, (28)

andx?=k? +k2,. The potential(r) in Eq.(24) ensures that the wave function vanishes at the inner
and outer radii positions/(r=R;, 8,2 =(r=R,;, #,2)=0. The solution foZ(z) amenable with the
boundary conditionZ(z=0)=Z(z=L)=0, is

k
Z(2) = sinlk,2) = sin(f’z), k=1,2,3, ... . (29)
The general solution to the Bessel equatiBa. (28)] is

p(r) = Ad(kinr) + BYi(Kpnr), (30)

whereA, B are numbers and,, Y, are Bessel functions of ordérof the first and second kind,
respectively. Hence, the boundary conditions lead to the determinental equation for nontrivial
solutions,

Ji(kinR)Yi(kinRo) = J1(kinRy) Y/ (kipR) = 0. (31

Equation(31) can be easily solved fdk,. Thus, the eigenstates correspond to an energy in the

form,
h2(KE + K2 ﬁ2< (kw) )
Epo= —n 2K - k . 32
HC 2m 2m L (32)



012107-5 Schrodinger problems for surfaces of revolution J. Math. Phys. 46, 012107 (2005)

TABLE |. Energy gapsAEpg and the relative errob(e), for a quantum-mechanical particle with mass
confined to a set of hollow cylinders wifR =(1-¢) nm andR,=(1+¢€) nm, as calculated employing Eq83)
and(35), respectively. Length is measured in nm and other units are chosen sudii/tbat= 1.

n | AEpg Se=10% de=1079) 8e=107?) Se=10"
0 -0.250 00 3.%10° 3.9x107 3.9x10° 3.9x103
1 0.750 00 3.%10° 3.9x107 3.9x10° 3.9x103
2 3.750 00 3.%10° 3.9x107 3.9x10° 3.9x103
1 3 8.750 00 3.%10° 3.9x107 3.9x10° 3.9x103
4 15.750 00 3.%10° 3.9x107 3.9x 105 3.8x103
5 24.750 00 3.%10° 3.9x 1077 3.9x10° 3.8x10°3
6 35.750 00 3.%10° 3.9x107 3.9x10°5 3.7x10°3

-0.25000 8.5 10°° 8.5x 1077 8.5x 107 8.5x 107
0.750 00 8.5x10°° 8.5x 1077 8.5x 107 8.5x 107
3.750 00 8.5x10°° 8.5x 1077 8.5x 10 8.5x 107
8.750 00 8.5 10°° 8.5x 1077 8.5x 107 8.5x 107

15.750 00 8.5 10°° 8.5x 1077 8.5x 107 8.5x 107

24.750 00 8.5 10°° 8.5x 1077 8.5x 107 8.5x 107

35.750 00 8.5 10°° 8.5x 1077 8.5x10° 8.5x107°

N
o O~ W N PEFE O

V. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we compare results for eigenstates of electrons confined to a thin cylindrical
shell employing the full three-dimensional Schrédinger equation and the quasi-two-dimensional
Schrédinger equation based on differential-form methods using curvilinear coordinhtes u®)
with u nearly zero in the cylindrical shell. The energigs; andE,, ¢ of the two theories are given
by Egs.(21) and(32), respectively, and we see that they have the tgrh2m)(kw/L)? in com-
mon. The dominating term i(21) is E,=(%/2m)(n/2¢€)? which is order of magnitudes larger
than the other terms so in order to compare the two theories we will corisjdes a reference
energy and define the energy gap

AEpe=Epg—E £<k_77)2_i4|2-1 (33
DETEDG ™ om\ L) T 2m 4R?
ho(km\? & ( (nr)z)
AEuc=Epc—En-—|— | =—(K&-|=—] |, 34
Hemmhe 2m(L> 2m\™"\ 2¢ 34
and the relative error
AEyc - AE Enc— E
5= HC DG — HC DG. (35)
AEpg AEpg
The relative errofs can now be used to rewrite E(B2) so as to obtain the form
B =l (”_77)2+<k_77)2+(1+5)4|2_1 (36)
HC™ om| \ 2¢ L 4R |

whereR,=R+ e andR;=R-e. Except for the tern®, which in most cases can be neglected, this is
the same as E@21). In Table I, we list the energy gabEpg and the relative errof, as obtained
for a hollow cylinder withR=1 nm ande=10"“R, 10°R, 10°R, and 10'R.

Evidently, the agreement is surprisingly good between the two models even for the case where
€ is 10% ofR. The eigenstates for the full three-dimensional problem are
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[k : Ji(KinRo)
(r,e,z):sm<—z>ex |I0)(J(k r)—————Y (k") |, (37)
i 1 p( ko) =3 kR 1(Kin
corresponding to the energy eigenvalues given by B8). Similarly, the eigenstates for the
two-dimensional problem are

x(r,6,2) = sin(kaul)exp(iluz)Xg(u:*), (38)

with

X3(u3):sin<2—:(u3—63)), n=12,3, ..., (39)
3

corresponding to the energy eigenvalues given by(Ef). Note that these eigenstates are exactly
the same in theirz and ¢ dependenciegor u* and u? dependencigssince u'e[0;L], u?
e[0;2#], 6[0;2qa[, andze[0;L] with k, |, andn integers. This could in fact have been seen
beforehand. Indeed, for the cylinder we hawk=z, u’=6, and u>=R-r. So the equationy
:\,"Eljzz V1-u®/Ry gives us in the limite®— 0 thaty,(u*) =Z(z) and x,(u?)=0O(6). For the sake of
completeness we note that the exact equationyfie

ﬁZ

_ +V(ud)y =Ey, 40
om X+ V(u)x=Eyx (40

1 1
Pt ——— Bt Bm —)
( PR AR-W)?
and in Sec. Il the factofR-u®)~2 in Eq. (40) is replaced with the zeroth order tefRi2.
We would like to point out that we obtain the same result for an annulu3?ias for the
hollow cylinder inR3, except that in the former case, thedependence disappears in the eigen-
states as does the tefirr/L)? in the corresponding energy eigenvalue expressions. However, the

1/4R? contribution to the energy also appears in the annulus problem as this term reflects radial

confinement of the quantum-mechanical particle.

VI. CONCLUSIONS

The Schrédinger equation in curvilinear coordinates,u?,u?) is derived wherg(u®,u?,u®

=0) describes the two-dimensional surface to which a quantum-mechanical particle is confined. In
the case of a surface of revolution it is possible to separate the Schrédinger equation in curvilinear
coordinates so as to obtain three ordinary differential equations. As an example, energy eigenval-
ues and eigenstates are determined quasianalytically for the case of confinement to a finite cylin-
drical surface. Results are in good agreement with corresponding full three-dimensional results of

a hollow cylinder in the case where the inner and outer radii approach each other.
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By using a variant of the quantum inverse scattering method, commutation rela-
tions between all elements of the quantum monodromy matrix of the bosonic mas-
sive Thirring(BMT) model are obtained. Using those relations, the quantum inte-
grability of BMT model is established and tt&matrix of two-body scattering
between the corresponding quasiparticles has been obtained. It is observed that for
some special values of the coupling constant, there exists an upper bound on the
number of quasiparticles that can form a quantum-soliton state of the BMT model.
We also calculate the binding energy foMasoliton state of the quantum BMT
model. ©2005 American Institute of PhysicfDOI: 10.1063/1.1818722

I. INTRODUCTION

Quantum integrable field models in 1+1 dimensions are objects of interest due to their close
connections with different areas of physics as well as mathenatitEhese integrable theories
have played an important role in understanding the basic nonperturbative aspects of physical
theories relevant in the realistic 3+1 dimensional models. Through quantum inverse scattering
method(QISM) one can establish the integrability property of these models and obtain the spec-
trum as well as different correlation functions of the corresponding mddels.

Massive Thirring model in 1+1 dimensions has been widely studied as a toy counterpart to
low energy QCD, since it does not include many of the complications arising in 3+1 dimensions.
The study of a nonlocal massless Thirring model is relevant, not only from a purely field theoret-
ical point of view but also because of its connection with the physics of strongly correlated
systems in one spatial dimension. This model describes an ensemble of nonrelativistic particles
coupled through a two-body forward-scattering potential and displays Luttinger-liquid betiavior
that can play a role in real one-dimensional semiconducfors.

Massive Thirring model in 1+1 dimensions can be treated through QISM for both bosonic
and fermionic field operatofsin this paper, we shall focus our attention to the bosonic massive
Thirring (BMT) model. The classical version of the BMT model is described by the Hamiltonian

N i) «dpy Iy LOdy, O, . . .
" f . dx{" IE{ <¢1% - %‘“) i (@% i %‘ﬁz)} ~ (D12 + byoh) — Aébibrbay
(1.2

with the equal time Poisson brack@&B) relations,

{B1(x), p1(y)} = {100, B2V} =0, {h1(¥), p1(y)} = =i 8(x-y),

3Electronic mail: tanaya@theory.saha.ernet.in
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{2(X), ho(Y)} = {ho(X), po(¥)} = 0, {ho(X), p(y)} =~ 18X —y). (1.2

It is well known that this BMT model is intimately connected with the derivative nonlinear
Schrédinger DNLS) model. In fact, one can generate the Lax operator of the BMT model by
“fusing” two Lax operators of DNLS model with different spectral paramejt%'rl'ﬁle integrability

of the classical DNLS model, possessing ultralocal PB structure, can be established from the fact
that the corresponding monodromy matrix satisfies the classical Yang—Baxter edﬁd[hm.
quantized version of this DNLS model also preserves the integrability property. By applying
QISM, the quantum integrability of DNLS model is established and the Bethe eigenstates for all
conserved quantities have been construtted.

In an earlier work by Kulish and Sklyanfhl;he Lax operator and the correspondiRgnatrix
for the quantum BMT model has been given, though the detailed calculations are not being
explicitly shown. Moreover, the quantum Yang—Baxter equati@QBE) at the infinite interval
limit and hence the corresponding commutation relation between the creation and annihilation
operators have not been studied. However, it is evident that taking the infinite interval limit of the
monodromy matrix and corresponding QYBE is necessary to get the spectrum for the quantum
version of the Hamiltoniag1.1). In this context it may be mentioned that, by applying a variant
of the QISI\/i3 which is directly applicable to field theoretical models, the quantum DNLS model
has been shown to be integrab?é® The infinite interval limit of the corresponding QYBE
enabled us to obtain the spectrum of all the conserved quantities including the Hamiltonian and
also the two-particlé&s-matrix. Therefore, it is interesting to explore the integrability property of
the quantum BMT model by using the same variant of QISM that we applied for the DNLS model.

It may be noted that the one-dimensional Hubbard model has been treated earlier through alge-
braic Bethe ansatz in the infinite interval limit. As an advantage of taking this infinite interval
limit, the commutation relations among various elements of the corresponding monodromy matrix
are obtained in a much simpler forth.n this paper our aim is to establish the integrability
property of the quantum BMT model and to obtain the spectrum of all conserved quantities
including the Hamiltonian by using the QISM at an infinite interval limit.

The arrangement of this paper is as follows. In Sec. Il, we consider the classical BMT model
and evaluate the PB relations among the various elements of the corresponding monodromy
matrix at the infinite interval limit. Using these PB relations, the integrability of the classical BMT
model can be established in the Liouville sense. In this section we also derive the expressions for
the classical conserved quantities of the BMT model. In Sec. Ill, we construct the quantum
monodromy matrix of the BMT model on a finite interval and derive the corresponding QYBE. In
Sec. IV, we consider the infinite interval limit of QYBE and obtain the commutation relations
among the various elements of the corresponding quantum monodromy matrix. Such commutation
relations allow us to construct exact eigenstates for the quantum conserved quantities of the BMT
model by using the prescription of algebraic Bethe ansatz. In particular we are able to obtain the
spectrum for the quantum version of the Hamilton{arl). Furthermore we obtain the commu-
tation relation between creation and annihilation operators of quasiparticles associated with the
BMT model and find out thé&-matrix of two-body scattering among such quasiparticles. In this
section we also calculate the binding energy fax-goliton state of the quantum BMT model.
Section V is the concluding section.

1. INTEGRABILITY OF THE CLASSICAL MASSIVE THIRRING MODEL
The classical version of the BMT model is described by the Lax opetator,
1 1 . 1.
Epr(¥) — p2(x)} - Z{)\Z - _} §{7\¢1(X) - X‘ﬁz(x)}

2
U= 1 ' (0 ) @y
Apa(X) = 3 $2X) = Edp(0) = p 0} + Z{)\Z - P}

where p;(X) = ¢1(X) 1(X), po(X)=do(X)o(X), N is the spectral parameter ardis the coupling
constant of the theory. The bosonic fieldgx), ¢,(x) satisfy the PB relationgl.2) and vanish at
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|| — o limit. The monodromy matrix on finite and infinite intervals are defined as

Tﬁi()\) =P eprX2 U(x,\)dx (2.2
and
TN = lim e(- xz,)\){P eprX2 U(x,)\)dx} e(xy,\), (2.3

respectively, wheré@® denotes the path ordering agtk, \) =g (/90*=(1AI}osx
First, we want to investigate the symmetry properties of the monodromy m@tBx It is
easy to check that, the Lax operat@rl) satisfies the relations

UXN) * = KUXN*)K, (2.4a
U(x,—N\) =K'UX,MK', (2.4b
whereK:(llf’_—g 5_5) and K’:(é _01). By using these relations, we find that the symmetries of the

monodromy matrixT(\) (2.3) are given by

TN * = KT K, (2.59

T(=N)=K'T(M)K'. (2.5b

Due to the relatio2.59, T(\) can be expressed in the form

a(\) - éb* (M)

b(x) a*(\) 2.6

T(N) = (
where\ is taken as a real parameter. Moreover, by using the symmetry re(@tii, it is easy
to see thata(-N)=a(\) and b(=\)=-b(\). Therefore, it is sufficient to derive the PB relations
among the elements df(\) only for A =0.
Next, our aim is to calculate the classical conserved quantities of the BMT model by using the
approach described in Ref 2. Frof®.2), one obtains the differential equation followed by the
monodromy matrixTﬁf()\) as

£7 X _ X
g D) = U0 T, 2.7
Now, let us decompose the monodromy matrix in the form

Tﬁi()\) = (1 +WI(Xp,N))exXpZ(Xy, X1, M) (1 +W(X1,N)), (2.9

whereZ(x,,X;,\) is a diagonal matrix antV(x,\) is a nondiagonal one. The Lax operator of the
classical BMT model can be expressed s, \)=Uy(x,N) +Upq(X,\), where Uy(x,\) is the
diagonal part andJ,4(x,\) is the nondiagonal part df(x,\). Using the above expression of the
Lax operatorU(x,\) (2.1), the differential equatioii2.7) can be decomposed into

d—Z—u +U, W (2.99
dX_ d ndVV, .
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dw
& - 2UdW_ Und+ WUnd\N: 0. (29b)

The structure of the Lax operat(®.1) ensures thaiV(x,,\) andZ(x,,X;,\) can be written in the
form

WXz, M) = = W™ (Xp, M) oy + W(Xp, M) o,

Z(Xz, X1, )\) = Z(Xz, X1, )\) 3.

Substituting Eqs(2.6) and(2.8) in the expressiol2.3), and usingM(x,\) — 0 at|x| — ° limit, one
obtains

in?
Ina(\) = lim {z(xz,xl,)\) + T(Xz_ xl)}.
Xp—+0

Xp— —®

Substituting the explicit form of(x,,x;,\) [as obtained by integrating E¢R.99] to the above
expression, we get the following form of &i\):

Ina(\) =i f {11 — oo tdX +iéN f WX — % f doWdx. (2.10

Next, we expandv(x,\) in inverse powers ok as

W(X,\) = g{z .
j=0

Using the differential Eq(2.9b) followed by W(x,\), the expansion coefficien;’s can be ob-
tained explicitly in a recursive way. The first few nonzevgs are given by

Wo= =261, Wp=4ichy +8Edy(yghy) + 2.

Substitutingw;’s in the expression of la(\) (2.10), one gets

whereC,’s represent an infinite set of conserved quantities. The first two of them are explicitly
given by

Co=-¢ f {11+ doboldx, (2.113

+

cl=4i§f ¢1¢1xdx+2§f {p16b2+ b }dx + 8E f (1) (dop)dx.  (2.11D

—00

Next we expandv(x,\) in powers of\ as

W(x,\) = 2, WiNA*L,
=0

In a similar way as above, usin@.9b), the first few nonzerdv;'s can be obtained as



012301-5 Quantum integrability of Thirring model J. Math. Phys. 46, 012301 (2005)

Wo= =26, Wy =~ 4dighy +8E(1¢b1) b+ 2by.
Correspondingly, Eq2.10 yields
Ina(\) = >, iCA2",
n=0

WhereEn’s represent another infinite set of conserved quantities. The first two of them are explic-
itly given by

Co= SJ {d1¢ + rdboolx, (2.123

61:4i§f ¢;¢2de—2§f {drha + Boprydx - 88 f (¢160)(Bopdx. (2128

Now by combining these two sets of conserved quantities, the mass, momentum, and the
Hamiltonian of classical BMT model can be expressed in the following way:

1 ~ o .
N=- Z(Co -Co = J (P11 + bapr)dX,

1 ~ o .
P=- 4_§(C1 +Cy) = J_ (¢11x+ Dopo)dX

1 ~ * . * * * * * *
H=- 4—§(C1 -Cy= j [=i(1b1, = dobp) =~ {b1ba+ bocbi} — 41 hrbrpylaX.
Next, we want to derive the PB relations among the elemenfB(f (2.6). We apply the
equal time PB relationgl.2) between the basic field variables to evaluate the PB relations among
the elements of the Lax operat(.1) and find that

{UN) @ U(y, )} =[r(\, w),U(xN) @ 1+1 @ U(y,m)]8(x—y), (2.13
where
r\w) == Eto3® o3+ (0, @ o_+0_® 0,)} (2.14
with
. A2+ 2 c_ Au
_2()\2_“2)’ _)\2_/*1‘2.

Now, by using Eqs(2.13 and(2.3), one obtains

{TO) @ T(w}=r O\ wTO) ® T(w) =T @ T(w)r-(\, w), (2.19
where

r.=—&to3® o3+ S0, ® 0_+S-0_® 0dy),

with sZ=+2im\25(\?~ u?). By substituting the symmetric form df(\) (2.6) to Eq.(2.15 and
comparing the individual elements in both sides, we obtain
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{a(\),a(w)} =0, (2.16a

{a\),a* (w}=0, (2.16b

{b(\),b(w)} =0, (2.160

{a(\),b(w)} = é(%ﬁi)a(h)b(u) = 2imEN*o(N? - pP)b(M)a(w), (2.16d
N2+ 2

{al\),b* (w}=- §< )a(k)b * () + 27NN - pdb* (Na(w),  (2.169

)\2_1“2

{b(\),b* (w)} == 4imA26(\* = u?)|a(V) . (2.169

From Eg.(2.163 it follows that all expansion coefficients occurring in the expansions of
In a(\) will have vanishing PB relations among themselves. Hence, the following expressions will
hold true

{CmCt ={Cn,C} ={C,C} =0,

for all values ofm andn. Since the mass, momentum, and the Hamiltonian of the classical BMT
model has been expressed in terms of the expansion coeffi€lgatsdC,’s, all of them will have
vanishing PB relations among themselves. Thus the integrability property of the classical BMT
model, described by the Hamiltonidh.1), is established in the Liouville sense.

IIl. COMMUTATION RELATIONS FOR THE QUANTUM MONODROMY MATRIX ON A
FINITE INTERVAL

By using a version of QISM which is directly applicable to field modeis,this section we
shall show that the quantum monodromy matrix of the BMT model on a finite interval satisfies
QYBE. The basic field operators of the quantum BMT model satisfy the following equal time
commutation relations:

[$1(X), p1(Y)] = [1(X), oL ()] =0, [1(X), i(Y)] =R (X~ Y),

[ho(X), da(y)] = [h3(X), B3YT =0, [ho(x), pAY)] =X -Y), (3.)

and the vacuum state is defined through the relatipyiz)|0) = ¢,(x)|0)=0.
In analogy with the classical Lax operai@.1), we assume that the quantum Lax operator of
BMT model is given by

2

101(X) — Fapalx) — Al - qu;(x)

+ —
: 4 4)\?
Ul =1 1 2 o1 | G2
Ap1(¥) = = ¢a(x) = 0110 + Qo2 + = 1

where p;(X) = ¢1(X) $1(X), pa(X)=hh(X)pp(x) and f1,f,,9;,0, are four parameters which will be
determined later in this section through QYBE. Using the Lax ope(&t@y, the quantum mono-
dromy matrix on a finite interval is defined as



012301-7 Quantum integrability of Thirring model J. Math. Phys. 46, 012301 (2005)

Tﬁi()\) =P eprX2 Ug(x,N)dx:, (3.3

X1

where the symbol: denotes the normal ordering of operators. This quantum monodromy matrix
(3.3) satisfies a differential equation given by

9 i 1 _ )
a—xzf;g(x) = UM T EN): = = L'—l{xz - p}aﬁ 20 +IEN (%) 0, TEN)
- E B0, T30 + N0 T 100) - 0 T 20 )

+ if1¢1(xz)9117)(2(>\)¢1(x2) - if2¢12L(X2)9117X2()\)¢2(X2)
- ig141(%0)e; TXZ(A)cle(Xz) + |92¢2(X2)6227X2()\) h(%), (3.9

wheree; ;= 2(1+0'3) and e,,= 2(1 o3). Now, to apply QISM, we must find out the differential
equation satisfied by the produff}()\) ®T XZ(,u) By using the basic commutation relatiof31)

and the method of “extensior,ive f|nd that the product of two monodromy matrices satisfies the
following differential equation{detail calculations are given in the Appengdix

J
—(T20N) @ T Aw) = + LN T 2N @ T &) (3.5
X, N 1 1 1
where
LGN, ) =Ug(XN) @ L+ 1@ Ug(X, ) + LA\, ), (3.6
with
——1f3p (0 —héufipl(0) 0 0 -
h
L2000 -4, i
— M —
0 91 f1p1(%) 0 0
+1g,f2p,(X)

. - 1
La0GM= | 1 BiNt1hy(x) —ﬁg{xmm} Aifip(0  héugi 0 |

hfz 592

B _fﬁz( X) +1iGof2po(X)  + == Ph(X)
- 0 fiNg1 b1 (X) 0 - ﬁgim(x) -
%
L + %@(x) ~ ighpa(x)

In the expressioli3.5), the sign of normal arrangement of operator factors is taken .abhe sign

: 1, applied to the product of several operator factansluding ¢4, ¢,, qSI, and ¢£), ensures the
arrangement of aL{zSI, qb; on the left, and alkp;, ¢, on the right,without altering the order of the
remaining factors For example,
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i Xprba Y © = plpIXYehidby,

whereX andY may in general be taken as some functions of the basic field operators.
Now one can easily check thatx;\, u) (3.6) follows an equation given by

ROL LGN, 1) = L0 MR, ), (3.7

whereR(\, u) is a (4 X 4) matrix of the form

1 0 0 o0
[0 s(\,u) th,u) O
RMZ) 0 tum suw 0 | 3.8
0 0 0o 1,
with
N = p? (q-q Hru

q- g

andg=e"* The above equatiof8.7) enables us to determine the exact expressions of the param-
etersfy, fy, 01, Oo, @ in terms of the coupling constagt We obtain

t\, p) = g u2q " S\, p) = \2 1

hé=-sina, (3.99
ge—ia/Z
fi=0g,= , 3.9b
170 cosa/?2 ( )
geialz
=f, = . 3.9
9= cosal2 (3.99

Using Eqgs(3.5 and(3.7), we find that the monodromy matr{8.3) satisfies QYBE given by

ROLTEN) @ T2(0) = T &) © TZMNRM ). (3.10

Using the above QYBE3.10, the commutation relations among all elements of the quantum
monodromy matrix3.3) can be obtained easily.

Equationg3.93, (3.9b), and(3.9¢), describing the relations betweép f,, g1, 9,, @ and the
coupling constang, provide the necessary conditions for the Lax operé8®) to satisfy QYBE
(3.10. From Eg.(3.99 we can conclude that, the above method of deriving QYBE for quantum
BMT model is applicable only when the coupling constéries within the rangeé <1/4. The
parameterr has a one-to-one correspondence with the coupling conétemt—m/2< o< /2.

For the purpose of investigating the classical limit of the quantum Lax opg@a®)yr we take the
a—0 limit which is equivalent to thés — 0 limit for a fixed value of¢. From Eqs.(3.9b and
(3.90), it follows that at this limitf,,f,— & andg;,g,— & Hence we find that the quantum Lax
operator(3.2) correctly reproduces the classical Lax operatf) at#— 0 limit.

IV. ALGEBRAIC BETHE ANSATZ FOR THE QUANTUM MONODROMY MATRIX ON AN
INFINITE INTERVAL

The quantum monodromy matrix in an infinite interval is defined as



012301-9 Quantum integrability of Thirring model J. Math. Phys. 46, 012301 (2005)

T = lim  e(=x, T 2N)elxg,\), (4.7)

whereTii()\) is given by Eq.(3.3). Just as in the classical case, the quantum Lax opefadr
also satisfies the symmetry relations

Ug(XN) * = KUg(X\ * K, (4.2

Uy, = N) = K'Ug(X, DK, (4.2b)

where K and K’ matrices have appeared earlier in E8.4). Using Eq.(4.29, the quantum
monodromy matrix4.1) can be expressed in a symmetric form given by

A(N) —§BT(A)>
BA)  Af(h) /7

where\ is a real parameter. From E@L.2h), it follows that A(-\)=A(\) andB(-\)=-B(\). So
it is sufficient to obtain the commutation relations among the elements of the quantum mono-
dromy matrix(4.3) only for A=0.
Now we aim to obtain the infinite interval limit of the QYBE satisfied B{\) (4.3). To this
end, we split theZ(x;\, x) matrix (3.6) into two parts:

TN = ( (4.3

LGN, @) = Lo\, p) + LGN, 1),
where Ly(\, u) is given by

_—I—()\2+,u2) 0 0 0 ]
4
if1 1
IATCa _
|
0 -—(\?- pu? 0 0
] 4( ) |
_ i_(i_ 1) —_
4 )\2 ,LLZ
Lo\, u) = lim LN\, ) = )
e 0 Chow-TE Loe 0 B
i P e 4 M B
L1
4 )\2 MZ
] 0 0 0 '—(x2+u2) ]
4
_ _l(i+i>_
4 )\2 /-Lz

andZ,(x;\, ) is the field dependent part @f(x; A , u), which vanishes at— + . From Eq.(3.7)
we get
RO\, we(Xi\, m) = (X, RN, w), (4.4)

wheres(x;\, u)=ed™M#X By using the above mentioned splitting 6fx;\, ), we derive the
integral form of the differential equatiof8.5) as
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X2
TR0 @ T¥p) = e(Xo = Xai\, p) + f dx e(xp =X p) § Lo T XN @ T () ¢
X1
From this integral relation it is clear that at the asymptotic limjifx,— oo, Tii()\)@?’ﬁi(,u)

—e(Xo—X1; N\, w), Which is an oscillatory term. To get rid of this problem, we define an operator
like

W\, 1) = lim e(= XN\, w)T2(N) @ T2 p)e(Xai\, ). (4.9
Xy s = o
In the above defined operator, the oscillatory naturg” Q’I‘(A)@)T ii(,u) has been removed and
W(\, w) is perfectly well behaved at the linig ,x,— +. By using(3.10) and(4.4), it is easy to
verify that the operatoWW(\, u) (4.5) satisfies an equation given by

RO\ ) WIN, ) = W, MR(N, ). (4.9

The above equation represents the QYBE of the BMT model at an infinite interval limit.
Next, we want to express the QYBE.6) directly in terms of the monodromy matricé.1)
defined in an infinite interval. For this purpo3&(\,x) (4.5 can be rewritten as

W\, 1) = Co(N, ) TIN) ® T(w)C_(\, ), (4.7)

where
Ci\ ) = lime(=x; N, W EGGN, w), (4.89
C_(\,u) = lim E(=x; N, w)e(X;\, ), (4.8b

X——00

with E(x; N\, w)=e(X,\) ® e(x, u). Substituting the explicit forms oE(x;\, u) and e(X;\, ) to
(4.89 and(4.8b), and taking the limits in the principal value sense:,lim, P(€*/k)=+im5(k),
we obtain

1 0 00 1 0 00
C.00p) = 1 00 CO0p) = 1 00 @9
T 0 s 10 T T 0w 1 0] '
0 0 01 0 0 01
where
2|h§<)\ +i
_ gy 1\(, , 1 1
ps(\,p) = + +2mhé\ A+ — |\ N - - St
> o, 1 1 7 AN
NM-p -5+t —
N
Ziﬁf{)\,u+—}
_ A
- 5 ) (4.10
, , 1 .1
)\_M_F-‘- 5 +le

Substituting the expression W(\ , u) (4.7) in Eq.(4.6), we can express this QYBE for the infinite
interval in the form

RO w)CeN )TN © T()Co(N, ) = Co(p, ) T(w) © TINC(, MR ). (4.1
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By inserting the explicit forms oR(\, x) (3.8), C.(\,u) (4.9), andZ(\) (4.3) to the above
QYBE (4.11) and comparing the matrix elements from both sides of this equation, we obtain the
following commutation relations:

[AN),A(w)]=0, (4.123
[AN),AT(w)]=0, (4.12h
[B(A),B(w)]=0, (4.129
ANBT () = %B*( JAN) = %B*wm) 2 e\ SN = p2)BTVA(w),
' (4.129
B(WAM) = quA(A)B( )= MA(A)B(;L) 2mh N2 ~ kAAGBN),
. (4.12¢
B()B'(\) = 7\, w)BTV)B(w) + 4mh N wdN2 - pDAT)AN), (4.120
where
242 1 2
A =| 14 SEN " {M” @}

N- )P 1 1 11
( ) )\2—,u,2——z+—2—|e )\2—/.L2——2+—2+|6
N N

It is interesting to note that, for the case* u, Eq.(4.12f gives[B(\),B(u)]# 0, whereas from
Eq. (2.16f), one obtains thafb(\),b* (u)}=0 for A # u. Thus the correspondence principle is not
manifest here in a straightforward manner. HoweverftheO limit of #(\, ), gives the correct
classical counterpart of the commutation relat{dri 2f).

Due to Eq.(4.129, all the operator valued coefficients occuring in the expansion AfAn
will commute among themselves. As a consequence the BMT model described by the Lax opera-
tor (3.2 turn out to be a quantum integrable system. By applying the method of algebraic Bethe
ansatz, one can also construct the exact eigenstates for all commuting operators which are gener-
ated through the expansion of &f\). With the help of Eq(4.), it is easy to find thaf\(\)|0)
=|0). By using this relation and Eq4.129d, it can be shown that

9= N
AN s o o oin) = H ( : VT )|M1,,u2, AN (4.13
where are all distinct real or complex numbers andug,ms, ... uN)

—BT(,ul)B‘l(,uz) .BT(un)|0) represents a Bethe eigenstate. Using the commutation relation
(4.12f one can also calculate the norm of the eigensttés;)B'(u,)- - -B'(uy)|0). However, the
commutation relationi4.12f) contains product of singular functions

1 1 1 1 1 1
S W ORI O
( LN 2 € Hm2 2 €

which is undefined at the limix — . As a result, eigenstates il (u;)B(u,)- - Bf(uy)|0) are
not normalized on thé-function. To solve this problem, we consider a reflection operator given

by



012301-12 Tanaya Bhattacharyya J. Math. Phys. 46, 012301 (2005)

R'(\) =B OV(AT() ™ (4.19
and its adjointR(\). By using Eqs(4.123, (4.12b, (4.1209, (4.120, (4.12¢, and(4.12f), we find
that such reflection operators satisfy well-defined commutation relations like

RIOVRM(w) = ST, wRT(wRT(V),
ROVMR(w) =S\, w)R(WR(N), (4.15

ROVRT(w) = SO\, )R ()R + 4mhin2 SN2 - ?),

where

)\Zq _ qu_l
)\Zq—l _ qu'
The S(\,u) defined above represents the nontriv&matrix element of two-body scattering
among the related quasiparticles. We find that &is, ) satisfies the following conditions:

S\, ) = (4.16

SN W) =S(pN) =S* (), (4.17)

and remains nonsingular at the limit— x. Consequently, the action of the operators Ré\) on
the vacuum would produce well-defined states which can be normalized ahftimetion.
The point to be noted here is that in E@.13), the eigenvalues oA(\) are in general

complex. To get real eigenvalues, we define a new operat&fkl)wthrough the relation Iﬁ\()\)
=In A(\e"'*?) and expand this operator in inverse powers\ pf

INnAN) = >, ;\C—;; (4.189
n=0

Using Egs.(4.13 and(4.18), it is easy to see thdl,’s satisfy eigenvalue equations like

Colptas 2 -+ 1) = Xl 1 By - oD,

where the first fewy,’'s are explicitly given by

N N

xo=aN, x;1=2sina>, ,ujz, X2=Sin 20, ,u?. (4.19
j=1 =1

It may be noted that these eigenvalues are all real wh@nare taken as real numbers. Next we
expand the operator l&(\) in powers of\ as

InAQ\) = > iCA2, (4.20
n=0

and by using4.13) we obtain

Cn|lu’1!/-l/21 T uu’N> :’)?n|/-l/luu'2! ree !MN>-

The first few,’s are explicitly given by
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N N

~ ~ . 1 . . 1
Yo=—aN, X1=-2sinaX, =5, X,=-Ssin 22>, —;. (4.21)
=1 4 =1 4

In analogy with the classical case, one can now define the momentum and Hamiltonian of the
quantum BMT model as

1 ~ 1 -
P:_Zg(cl"'cl)- H:_Zg(Cl_Cl)-

By using(4.19 and(4.21), the eigenvalue equations corresponding to the above momentum and
Hamiltonian are obtained as

N

h 1
P|/’L11/~’L21 L 1/*LN> = EE (/*‘sz - _2>|1u11/'l‘21 e 7/~LN>1
j=1 My
fiea | , 1
Hlpa sy - oin) = 52 wi+ = |l o, ) (4.22
=1 M

In the above expressiong;'s are taken as real numbers and, uy, ... ,un) represents a scatter-
ing state. Now to construct quantusisoliton states of the BMT model, complex values.gfcan
be chosen in such a way so that the eigenvalues corresponding to different expansion coefficients

of In A()\) still remains real. Such a choice is given by

. (N+1
,uj:uexp{—m( 5 —J>], (4.23

whereu is a real parameter arjd=[1,2, ... N]. For the above choice ¢i;, Eq.(4.13 takes the
form

)\2 _ quN+1

A 1, - 1n) =q‘”(m)lubuz, - (4.24

Consequently, the energy eigenvalue equation corresponding to the gusssoiiton state can be
obtained asH|uq, s, ... un)=E|gt1, o, ... ), Where

f 1 \sinaN
E=— 2+—> . 4.2
2('“ w?) sina (4.29

Thus we find that quantum-soliton states can be constructed for the BMT modeNor 1. Now
we assume a particular value of the coupling constagiven by Aé=-sina=-sin(2#m/n),
wherem andn are nonzero integers which do not have any common factor. FrortdExp, we
obtain u;= u;., for the above choice of. Since all theu;’s must be distinct, we geél<n as a
restriction on the number of quasiparticles that can form a quantum soliton state for the BMT
model whené=—(1/%)sin(27m/n).

Next we aim to calculate the binding energy foNesoliton state of the quantum BMT model.
Substituting the expression of; (4.23 to the first relation in Eq(4.22), the momentum eigen-
value of aN-soliton state is obtained as

fif , 1]\sinaN
P=- - . (4.26)
2 Mue/) sina

It is interesting to observe that the ener@y25 and the momentum eigenvalyé.26) of a
N-soliton state satisfy the dispersion relatigfi= P>+m?, wherem=% sin aN/sin . To calculate
binding energy we assume that the momenti@.26) is equally distributed amonly number of
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single-particle scattering states. The real wave number associated with each of these single particle
states is denoted by,. With the help of Eqs(4.22) and(4.26), we find that

1 1\ sinaN
,LLS——2:< 2——2) —. (4.27)
Mo u /) Nsina
Using Eq.(4.22), the total energy foN number of such single particle states is obtained as
E’—ﬁ—N< 2+i>—h—N ( 2_i>2—sin2aN +4 " (4.28
T2 \T 2T |\ BT 2] NEsita ' '

SubtractingE (4.25 from E’ (4.28), we obtain the binding energy of the quantiN¥soliton
state as

Ex(aN)=E' ~E= " ( g i>2—5i”2“'\' ar ﬁ( 2+i)5i”“N (4.29
Bl = T2 |\ w?) N2sirf a 2\ w?) sina '
Note that the above expressionEf(a,N) remains invariant under the transformati@n- —a. So
it is sufficient to analyze the nature of binding energy within the rangex8= 7v/2. Now, for
Eg(a,N) to represent the energy of a real bound statemust be greater thalg. SinceE’ (4.28
is always positive, it is evident th&' > E for E<0. So we will restrict our attention only for the

caseE>0, when the conditiofe’ > E is equivalent toE'2> E?. Substituting the explicit expres-
sions forE’ (4.28 andE (4.25, the above condition takes the form

N sina > sinaN. (4.30

SubstitutingN=2 in (4.30, we get the trivial inequality > cosa for «>0. So the condition
(4.30 is satisfied for theN=2 case within our chosen range af By using the method of
induction, we can easily prove that the condit{@30) is valid for arbitrary values oN. Thus we
get anN-soliton bound state whea lies in the range & |a|< /2.

V. CONCLUDING REMARKS

In this paper we consider the classical Lax operator of the BMT model and obtain the PB
relations among various elements of the classical monodromy matrix at the infinite interval limit.
By using these PB relations, the classical integrability of the BMT model is established in the
Liouville sense. We also calculate the classical conserved quantities of BMT model. Next, we
quantize the Lax operator of the BMT model. By using a variant of QISM, that can be directly
applied to the field theoretic models, we obtain the QYBE for the quantum monodromy matrix at
a finite interval. This QYBE enables us to determine the various parameters of the quantum Lax
operator in terms of the coupling constgniThen we take the infinite interval limit of this QYBE
and derive all possible commutation relations among the various elements of the corresponding
quantum monodromy matrix. These commutation relations enable us to establish the quantum
integrability of the BMT model and also to construct the exact eigenstates for the quantum version
of the Hamiltonian(1.1) as well as other conserved quantities by using algebraic Bethe ansatz. We
also obtain the commutation relation between creation and annihilation operators associated with
quasiparticles of the BMT model and find out tBenatrix for two-body scattering.

In this context, we consider the BMT model with some special values of coupling constant
given by é=—(1/h)sina=—(1/h)sin(2¥m/n), wherem andn are nonzero integers with no com-
mon factor. It turns out that the number of quasiparticles, which form a bound state for such
quantum BMT model, cannot exceed the valuaofVe have also derived the exact expression of
binding energy for a\-soliton state of the quantum BMT model. The binding energy turns out to
be positive for all allowed values af.

The commutation relation between creation and annihilation operators will play an important
role in the future study, since by using it one might be able to calculate the norm of Bethe
eigenstates and various correlation functions of the BMT model. In the future, we would also like
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to obtain the quantum conserved quantities of the BMT model in terms of the field operators by
using a method which was used earlier in the case of the nonlinear Schr('jdingerlanmmbl
DNLS model®
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APPENDIX

Here we give the details of deriving E@3.5). Direct attempt to calculatéd/ ﬁxz)(T x2()\)
®TX2(,M)) by using Eq(3.4), leads to indeterminate expressions of the f«ﬁ‘lzT“QZ()\) dl1(x)] and
[TXZ()\) #5(%)]. To avoid this problem by using the method of extensiore shn‘t the upper limit
of the monodromy matrlﬂXZ()\) by a small amount and takee— 0O limit only after differenti-
ating the product x2+E()\ ©T X2(,u) with respect tax,. So, using Eq(3.4), we obtain

(T*Z*f(x) © THw) = t Uglke+ €N © 1410 Uglxos ) TN © T2 i +K, +K.,
(A1)
where
i§

Ko =Gl T30 $100)] © 0. T2 = TT 0. 5001 @ 02T ) [T 0N bi(xp)]

® e T 2w di(x) = if LT 27 N), (%) ] @ e T () bo(xo) — iG1[ T2V, pi(xo)]
® ezzT;i(M) Ph1(Xo) + i92[7§i+6(7\). ¢;(X2)] ® 9227—2(#) Bao(X2),

K= T30 @ [0+ O, TH(w)] = 0T @ [l + , Ti2(w)] + if 16

+ 9euT TN @ [0 + &, T 2] - if 26406 + e T2 0N © [l + ), Ti2(w)]
gl + DTN © [y + T 20001 + gl + DT () @ [,
+€),T2w)].

Now we consider the case;>0. Sincegy(x,+e€) and ¢,(X,+€) commute withe,(x), ¢I(x),
$a(x), BY(x) for all x lying within x; andx;, we get] dy(xx+e€), T 2(w)]=[ polxo+ €), T 32(11)]=0.
Thus we can conclude that for a positiee K_=0. So we must calculate only the nontrivial
commutator§7 2 X2*E(N), i (Xo)] and[77} 2*€()\), hs(%,)] appearing in the expression Kf.

First let us calculate the commutat[)TXi"f()\) #1(x)]. For this purpose, we consider a
“transformation” ), which replaces the classical variablés(x), ¢,(x), and ¢>1(X)- ¢2(x) by
quantumgoperatoraﬁl(x), ¢»(x) and </>I(x), q&;(x), respectively. Next we use a correspondence
principle;

(T2, ¢l = i T2 (@ M), by () (A2)

whereT if“(q;)\) represents a classical monodromy matrix given by
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X2
Tﬁi“(q;)\) =Pexp f Uqg(X,N)dX,

X1
and Uq(x,)\):Q‘luq(x,)\). By using the fundamental PB relatio(i.2), it is easy to find that

Xote

{T2 @\, 41000} = f dx T2 (0 \{Ug(%,N), 1 (%)} T (AN

X1
= T:?E(qi N (F1by(X0)€11 = Q1 by (X2) €50 + )\U—)Tif(Qi N).

Taking e— 0 limit of the above expression and substituting it(#R), we obtain
Im{752 0, $106)] = ih(F1d100)ers = G110 €20 + N ) T2V (A3)

Next we must calculate the commuta{dfii“()\),qﬁ;(xz)]. Using the same correspondence
principle as before and finally taking the— 0 limit one obtains

1
lim[ 73200, 30)] = iﬁ(— fagh(xp)ers + Qo b)(X)€r2 ;a_)Tiim. (A4)

Taking thee— 0 limit of Eq. (A1) and using(/A3) and(A4), we finally obtain the differential
equation(3.5). Note that, instead oé>0, we could have choses<O in Eq.(Al). In that case
only the commutatore(x,+¢€),7 §i(,u)] and[ ¢,(x,+¢€), T §i(,u)] give nontrivial contributions.

However, by repeating similar steps as outlined above and finally taking-the limit, we would
have obtained the same differential equatiBrb).
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We discuss the relativistic top theory from the point of view of the de Sitier
anti—de Sitter group. Our treatment rests on the Hanson—Regge spherical relativ-
istic top Lagrangian formulation. We propose an alternative method for studying
spinning objects via Kaluza—Klein theory. In particular, we derive the relativistic
top equations of motion starting with the geodesic equation for a point particle in
4+N dimensions. We compare our approach with Fukuyama'’s formulation of spin-
ning objects, which is also based on Kaluza—Klein theory. We also report a gener-
alization of our approach to a N+D dimensional theory. €2005 American
Institute of Physics[DOI: 10.1063/1.1827923

I. INTRODUCTION

If one compares Regge’s wdrkpublished in 1959 and 1960, respectively, with the Hanson—
Regge work of 1974 about the relativistic spherical top th%@syze also Ref. ¥ one gets the
feeling that Regge thought of the trajectory constraint linking mass and the spin of a relativistic
spinning object as a deep physical concept of nature. Through the years it has become clear that
Regge was right. In fact, such a constraint, now called Regge trajectory, plays a fundamental role
not only in the dual string modélsnd the relativistic rotator theo?37, but also in string theoFy
and in the black holes approa%ﬂt seems that even Regge is in the Js%yl connection with the
mass and the internal angular momentum of celestial objects.

One of the simplest Regge trajectory for a spherical relativistic top is provided by the
expressiof*

1
H=PrP,+ 5313, +mg =0, (1)

where P* and2#"=-3"* are the linear momentum and the internal angular momentum, respec-
tively, associated with some spinning object. Herg,andr are constants determining the prop-
erties of the system and the symbet0” means weakly equal zero in the sense of the terminology
of Dirac’s constraints Hamiltonian formalisth(Here the indicess,» run from 0 to 3)

One of the interesting aspects @) is that it resembles one of the Casimir operator’s of the
de Sitter group,

Cl = %SABSAB, (2)

where the indice#\,B run from 0 to 4. In fact, if classically it is possible to make the identifica-
tions

3Electronic mail: nieto@uas.uasnet.mx
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S rPE, S ISHY Cp— - rPmg, (3)

then the spherical relativistic top may lead naturally to a de Sitter relativistic top and several
properties of the de Sitter group can be applied to such a system. The problem, however, it is not
so simple because the momerR4 and X+ are restricted to satisfy the so-called Tulczyjew
constraint?

SHP,=0 (4)

and it seems that there is not a counterpart in the de Sitter group formalism of this constraint. One
of the main goals of this work is to use a Lagrangian analysis of the relativistic top in order to shed
some light on this and other related problems.

As soon as we make the identificati¢d) the parameter, measuring the “size” of the top,
may acquire a particular interesting meaning, namely, it can be identified with the Planck length
lp=(AG/c®)Y2 or with the radius of the univergR. In the first case, the relativistic top may have
contact not only with elementary particles through the superstring top th&briaut also with
gravity itself*® In fact, it has been shownthat extending the Poincaré group to the de Sitter
group through a Wigner contraction with as a parameter one can make sense of a gravitational
theory as a gauge theory. Similar conclusion is provided by the MacDowell-Mansouri
formalism?*®

In the second case, one may find a connection between the relativistic top with accelerated
universe via the de Sitter space—time. In some sense, one may say that Regge is not only in the sky
but in the cosmos as well.

The central idea of this work is to develop different aspects of the de Sitter top theory using
the spherical relativistic top theory as a guide. For this purpose in Secs. Il and lll we show
explicitly how the first order and second order formalisms of a particular spherical top system are
related. In Sec. IV, we show how the Kaluza—Klein formalism may lead to de Sitter top theory. In
Sec. V, we make some final remarks. In Appendix B we report a generalization of our formalism
to 4+N+D dimensions.

Il. FROM THE FIRST ORDER TO THE SECOND ORDER LAGRANGIAN

Let us describe the motion of the top by four coordinatés) and a tetrae(;, (7) wherer is

an arbitrary parameter along the world line of the top. Heie) is used to describe the position
of the system, whil&(;, (7) is attached to the top in order to describe its rotations. We shall assume

that the tetradaﬁa)(q-) satisfies the orthonormal relations

77M ve,(ua) ezjﬁ’) = 7 af)r

7 Pefels = 7, (5)

where 7,,=diag-1,1,1,) is the Minkowski metric. We shall associate the canonical linear
momentumP,, to the linear velocityu*=dx*/dr and the spin tensak#’=-X"* to the angular
velocity a“”zef‘a)(de(”a)/dr).

Consider the first order Lagrangian corresponding to a special type of a relativistié top,

A

1
2 ( PUP,+ S22 2 mé) + 24P, (6)

1
L=u"P,+ EUWE’”_
where\ and§, are Lagrange multipliers. Varying with respect toP,, gives

Ukt = \PH + V4, (7)

where
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VE=ZRE, (8

while varyingL with respect ta> ,, yields
MYV — A 2% M EV VER
o —r—ZE + PrE - PYE, (9

Similarly varyingL with respect tc, leads to the constraint

PP, =0, (10

while varyingL with respect to\ one obtains

1
PP, + o 53, ¢ mg=0. (11)

SinceX#" is antisymmetric, we observe fro) that if ¢, is parallel toP, the last term in(6)
vanishes identically. Therefore, we may set

&P,=0, (12)

This condition must be added to the Lagrangi@nin the form »(¢“P,), where 7 is another
Lagrange multiplier. Varying the resultant extended Lagrangian with respegtiéads to(12).
While arbitrary variations with respect @ leads to the equatiod*”P,+ nP*=0 which, after
multiplying it by P, gives =0 and therefore one recovers the Lagrang&n

Our goal is to derive the second order Lagrangian associated with the Lagrafgi@ur
proof consists of some elementary algebra and for that reason in this section we shall only mention
the main results. Nevertheless, since in such an algebra there are some key steps, in Appendix A
we present the computation in more detail.

The main idea is to compute fro(i)<12) the combinatiorucou—-r? deto, where

usou=u,0*c,“u, (13

and

1
deto= Es“"“ﬁsﬁ“maﬂfamawa’ﬁp. (14

One finds the following resulifor details see Appendix A

5 20? 1
uoou —r? deta=r:—];[(u2+r7))\2+ﬁ7\4nﬁ] (15

where we used the notatioa?za”aw for any dynamical variabl@”. Using once again the
constraint(11) we find that(15) leads to the expression

s, M2 1 r? 2
M+ —| U+ Zr20? | - —(uoou - r? deto) = 0. (16)
g 2 Mg

This expression can be solved forin terms of the Lorentz scalatg, o2, uosou, and detr. But
before solving forA, let us show thak and the Lagrangiah are related by the expression

L=-m\. (17
First using the constraintd.0) and(11) the Lagrangian6) becomes
_ 1
L=u“P,+50""2,,.

From (7) and(9) we find the results



012302-4 J. Armenta and J. A. Nieto J. Math. Phys. 46, 012302 (2005)

uP, =\P? (19
and
1 52
EO"“VEM,,: )\?. (19
So, we get
1 2 1 2
L=u“P,+ EU“VEW:)\ P +?E : (20)

By using(11) once again, we see thé20) leads to(17).
Thus,(16) and(17) leads to the Lagrangian

L=-my

— (U2 +3r%02) £ (U2 + 3r20)? + r(uoou - r2 deto) ] v 21

2

Observe that itr vanishes only the minus sign in the symbo| makes sense. In this cag#l) is
reduced to

L=- mo[_ u2]1/2’ (22)

which is the well-known Lagrangian for a relativistic point particle.

Since the Lagrangia(®2l) is a function of the all Lorentz scalars that can be formed from the
velocitiesu and o, namely u?, o, uoou, and detr we observe that such a Lagrangian has
manifest Lorentz invariance. In fact, the Lagrangi@l) has a Poincaré invariance under the
infinitesimal transformationgx“=a*+,x" and def;, = /e[, for arbitrary v ,,=-w,,. By ex-
plicit computation, one can show by applying Noether’s procedure to these transformations that
P#* andM~#*=x*P"-x"P*+3 " are conserved generators obeying the Poincaré group algstara
Refs. 3 and 4 for detaijs

lIl. THE CONSTRAINTS FROM THE SECOND ORDER LAGRANGIAN

The central idea in this section is to derive the set of constraints associate@®itivhich,
of course, should correspond(t0) and(11). Instead of starting with the Lagrangian given21)
we shall take advantage of the formu({d$) and(17). From this perspective one may assume that
A=\(u,0) and define a “linear momentung,, and an “internal angular momenturty;, as

O\
Pu= (23
and
)N
=, 24
= (24

respectively. According t@17) we have the reIationsPM:—m%pM ands ,,=—m§|,w. One of the
reasons to definp, andl,,, is to avoid carrying all the time the factong.
Taking the derivative of16) with respect tau* leads to

s, Mo 1202 __ N o o8
)\+%SU+§I’ p#——ﬂu;ﬁmu Tap0” - (25)

Let us define
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A 1
A= )\3+—2(u2+—r202> : (26)
2m; 2
We find
)\4U2 2r2 r4
’p? = 4—mg = Z—mSUO'O'U + muaaaBUﬁMO#TUT)\U)\- (27)
But the identity(A19) leads to
u“aaﬁoﬁﬂaﬂaau)‘ =UT8— %aﬁ)\az - %U*B)\(O'* o) Ju (28)
and therefore we have
A Ar? r 1r*
A?p?= — U - —uoou— ——Uoaud? + ——Uu¥(a - o * )?, (29)
4my 2 8 64mg
where we used the fact that
a-a,BO-*B)\ =- 71177a>\(0' o ) (30)

Similarly, applying to(16) the derivative with respect to*” we obtain

s, M2 1, Nr? 2 o . *
A +R u +§r a2 IMV:_Z_TT%UW-FR(U Taul,— U O'HVU”)+;ng(le(0"O' ),

(31)
where we usedA18). This expression yields
ANrd ATt A2r8 ré ré réo?
A= ——0? - —cuoou- —5(o-o* )2 - ——Ugoul? - sU(o-o*)? - s(o-a* )2,
4amy Mg 8mg 2mg 16mp5 64mS
(32
where we used the identities* o* =— oo and(30).
Adding (29) and(32) leads to
1 A 1 A%r?
Az(p2 + —ZIZ) = —4(u2 + —r202> - —5 (usou-r?deto)
2r 4my 2 mg
(.. 1, 2
- —| u?+ -r?0?|(usou - r* deto), (33
4mg 2
where we usedA18).
Using (16) and (26) we discover that
1 1
2+ —12=- . 34
P o= (34)
SinceP,=-mgp, and=,,=-mgl ., we finally get from(34) the constraint
2 1 2 2 _
P +?2 +mg=0. (35

Let us now derive fron{25) and(31) the constrainE#”P,=0. We have
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sy N2 N NS NS L, Tiuoo)
A pV—RU u,+ o~ o u,,—s—mg(o-a' )o UV—FO' 00 PUg = s o*'u,
4 6
+ &u 070, 0%Pug+ l’—(0'- o*)o Mg, 0% (36)
ng T va B 2”\8 va B

The sixth term on the right-hand side #6) vanishes due to the identinoT”amo“ﬁuBEO.
Using (A19) and(30) it is not difficult to show tha{36) is reduced to

)\4 2 )\ZrZ r2 r4
A2l#vp, = Z—mg(f‘“’u,,+ 2—n_€<u2 + 50‘2> a*’u, - E}g(uat)’u -r? deto)o*'u,,. (37)

Solving the factoucou—-r? deto) in (16) and substituting the result i87) we finally discover
that!1#”p,=0. This leads to the constraint

SHP =0, (38)

which is the Tulczyjew constraint.
Summarizing, we have shown that the Lagrang@t) leads to the constraint85) and(38)
which were the starting point in the first order formalism of Sec. II.

IV. FROM A POINT PARTICLE IN HIGHER DIMENSIONS TO THE DE SITTER
RELATIVISTIC TOP

Let us start writing the higher dimensional metsigy in terms of the vielbien fieldEf,

Yun = ENER 7as, (39

where 7,55 is aflat metricin 4+N dimensions. Here we are considering the vielbien fE*;ﬁ)gas a
the function of the coordinated’.
The Lagrangian of a point particle moving in a background determined by the mgjgits

L == Mg(= yunx"x)*2, (40)

whereM, is the analogue of the mass of the object aMd= dxM/dr. From this Lagrangian one
gets the Euler—Lagrange equations of motion

DPM . :
oo =P+ IRstPS=0, (41)
where
L
Pm=—m (42)

and I“K'S are the Christoffel symbols associated wiily. We can writeE{\*,I in the form
Ef = (Ei(x’w EZ’MW)
Ef(xY) E*(xy)

where we used the notatioff'=(x*,y") =(x,y).
Using the Kaluza—Klein mechanism it is well known tt&} can be written in the form

N CAS wz’(x))
EM_< 0 &/ “

. . a! ’ ! ’
Here, for later convenience, we used the notatigr=E?, , €] =E7, andel’ =E .

(43
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Using (44) we can brake the metri@®9) in the form

— a' b’
Yur = g,uV + w/.l, Wy, Narp'
_ ap
Yui = (1)# € v (45)

_a _
Yij =¢ € Napy =gij(y),

whereg,,,(x) =€4(x)€2(X) 75
The line element & associated withyy, is

ds? = yyn dXM dXN =y, dx dx” + 2y, dx“ dy' + ; dy' dy’. (46)
Substituting(45) within (46) one gets
A5 = (g, + 0, @) 7y ) O A+ () € 7 )X Y + (6 € )y Ay (47)
This expression can be rewritten in the following form:
ds? =g, dx* dx” + (a)i' dx# + e dy')2, (48)
which is the Fukuyama starting point in the study of spinning particlésve choose the bad®™®
O = dx* (499
and
6% = 0¥ dxt+ e dy, (49b)
then we have that the line elemgdB) becomes
ds? =g, 040" + napt® . (50)

Therefore, in the bas@l9) the metric takes the form

. Our O )
= . (51
The dual base is given by

D,=d,- o€, 4 (528

and
Dy =€,4. (52b)

In fact, one can verify that

(04D,) = (dx*,0,~ w® &, = &" (53)

and
(67, Dy) = (0 dx*+ e dx,ul,d)=e'e), = . (54)

Similarly, one can check that
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(6*',D,)= (a)i’ dx* + e?’ dx',a, - wglejb,,r?j) = wi’ - eja’eib/wbry = wi’ - 72w, ,=0. (55
Let us compute the commutat{dd,,D,]. From (528 we have

[D,.D,]=[3, - % €,d.,~ o’ €,3]]= ,(3,~ o €,d) - 0% €,,6(3, ~ w’ €,

pmoal

=-4,9, —wM e, d)+ o’ e'b,,a(a —wM e, d). (56)
Considering thafd,,d,]=0,[d;,d;]=0 and[d,,,]=0 we find that the expressigh6) reduces

to
[D,.D,]= (- 3,0° +a,0% )69, + (0% €, 0" - o €05 )(del,)d. (57)

The second term i57) can be rewritten as

(? e w —wfe, W )(o7ieL,)(9j=wz’w5,( e'D eb,,&| (58)

w a’ v <!
Let us writee,, Eea,(?i, thus we have
(€, o€, - epiel,) = [ex,y]. (59
We assume that
[ea’veb’] == Cg’b’ed’! (60)

wherng:b, are the structure constants associated with some deogubstituting(60) into (57)
we find the expression

[D/,UDV] = (_ ﬁuwlt;, + avwz,)eb’ - wzrwgrcg’b’ed'l (61)
which by means of the definition

Ry, = 0,0 = 3,0° +Cly 0l o (62)

14

becomes
[D,.D,]=-R; 6. (63)
Following similar procedure we find that
[D,,Da]=0 (64)

and

[Da,Dp]=-Cl ey (65)
Thus, from(63)—«65) We see that the only nonvanishing structure constants related to the com-
mutator[ Dy, D] areC —Rb andCl,, .
In general, in a nonbase frame the connectigpp is given by
T'vine = 3(DpYn + Dnp = Due) + 2(Cuine + Cipn = Crpw) - (66)

SinceC,,,=0 andy,,=g,.(x) we get

F;wa = %(Da”i’/.w + DV:i/Va - D/.Lalva) = %(aag/.w + &nga - ap,gva) = {,UJ/CY}. (67)

In the same way, sinc€,,,,»=—R,,,o» We obtain
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F;wa’ = %(C,uva’ + C;La’V - Cya’,u,) == %R;wa’ ' (68)
We also get
F,u,a’b’ =0 (69)
and
Fa/b/c/ =- %Ca'b’c’ . (70)

With these results in hand fdr,yp We shall proceed to see their consequences in the equa-
tions of motion(41). Let us start splitting41) in the following form:

P+ T XPY+ T X"PY +T% @' P'=0 (71)

and

P+ T2, %P =0, (72)

where we used the fact that the only nonvanishing component§,Qf are I',,,, I',,,ar and
Fa!b/cl.
Using (67) and (68) we discover that71) and(72) yields

DP* . '
5— = Rl:a,XVPa (73)
pe

and

pd =0, (74)

respectively, wher®/Dr means covariant derivative in terms of the Christoffel symbplsa}.
Here we used the fact that

- MO'YMNXN
(= 7o) "

which means thaP™=\xM, with A =M(=ypX"k) V2
We shall show now thai73) and(74) are equivalent to the relativistic top equations of motion
(RTEM) in a gravitational field®? For that purpose we shall make the indices identification

a’' —(a,b) where the paira,b) is antisymmetric. Thus, the equations of motig#8) and (74)
become

M (75)

DP* 1_ .
S :ERf;abxvsﬁb (76)
i
and
Sh=0, (77)

where we used the notatidB®=P2* and introduced in76) the quantity% in order to avoid
counting twice.
The last step is to Writéa*"b:eietv’sw in order to write(76) and(77) in the form
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DP* 1 .

— =§R’V‘aﬁx“8‘*5 (78)
T
and
DS
— =0, (79
Dr

which are the traditional forms given to the RTEM in a gravitational field.
It is interesting to clarify the meaning of the constdfig. From (75 it follows the constraint

PMPNYym = — M3, (80)

which in virtue of the form of the metri,,y, given in(51), we see that80) can be written as

0 PHP" + 7y PYPY = = M (81)

or

1
9.PUP + - 598, =~ m, (82)

where we used the relaticﬁﬁ‘b:eie,'fsw and redefinedP* asrP* andMg asrmg with r a constant
of the motion. If we compare the expressi®R) with (1) we observe their great similarity.
However, they are not exactly the same because the consk#&ti,~0 given in (4) is not
satisfied byP* and S**. Instead of the constrairitt) we can define the vector

S =35€""PP,S,p (83)

and, as a consequence of this formula, we have

P, =0. (84)

Nevertheless, the relation betweEH” and $** is subtle and requires a careful analysis. First of
all, let us write the first order Lagrangian

. N
L:XMPM—E(PMPM+MS), (85)

corresponding t@40). Using (82) we see that40) can be written as

L=x*P }'WS A pp iSf“’S : 86
=X M+2X we o M+2r2 ur M | (86)
where x#"=¢elelx® and A=r2\". Comparing(86) with (6) one observes the close similarity
between both Lagrangians. We can even try to go f(86) to (6) by using the transformation

S =IH 4 PV - P, (87

But this implies to redefine the velocities and o*” in terms of the velocities* andx**. This is
related to the fact that the motion of a relativistic top can be described, in an equivalent way, by
two position vectors, namely, the center of mass and the center of chirgextensive discussion
about the meaning of these two position vectors of a relativistic top can be found in REFh26.
center of mass can be associated ¥t via the constrain®#”P, =~ 0, while the center of charge

with §**. Thus, the transformatio(87) suggests to identify the variablg with the difference
between the center of mass and the center of charge. In fact, multig§mdy P, one gets
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SYP,=¢“P"P,, (88)

where we assumeét'P,=0. Substituting this expression in(87) one discovers that*” can be
obtained fromS*” using the projector“*—(1/P?) PP,

Summarizing, we have shown that using the Kaluza—Klein theory it is possible to obtain the
relativistic top theory from a point particle in higher dimensions. This is in fact a very interesting
result because it means that although the top does not follow geodesics in four dimensions, it does
in higher dimensions.

V. FINAL COMMENTS

In this paper we have shown different aspects of a particular relativistic top, namely the top
satisfying (1) and (4). First, we showed the equivalence between the first and second order
Lagrangiang6) and(21). Then, the form of the LagrangiaB) motivated us to look for a higher
dimensional description of the top, and as a matter of fact we discovered that it is possible to
obtain the relativistic top equations of motion starting from a geodesic equation of motion of a
point particle in higher dimensions. This is an interesting result that deserves to be analyzed in
terms of a fiber bundle scenario.

First we notice that such a result is similar to the case of the Lorentz force associated with a
charged particle which can be obtained from a geodesic in five dimensions. More generally, our
result is similar to the generalized Lorentz force associated with a Yang—Mills gauge field which
can be obtained by a geodesic in B-dimensions. In this case, the traditional method is to
consider a 4 B-dimensional principle fiber bundle, which locally looks likeM* X B, whereM*
is a four-dimensional base space @i a group manifold whose dimensionDs The key object
to connect the geodesic in D+dimensions with the generalized Lorentz force in four dimensions
is the one-form in the cotangent spate(P),

w=gdg+gAg, (89)
WhereA:A‘;Ta dx* can eventually be identified with the Yang—Mills gauge field. H&teare the
generators of some group acting transitively orB and having the properties
[Ta Tol = CpTe- (90)

In principle, if we consider the fiber spadéd*x Q, whereQ corresponds also to a four-
dimensional manifold, one may apply similar description to the case of a spinning (dgedref.
17). In this case the connection one-form reads as

w=gtdg+gQg, (99)

where() is given by

Q=350 Spg dx. (92

Here, we shall assume th8tg are the generators of the de Sitter group(59) [or anti—de Sitter
group SQ@2,3)]. If we comparg49b) with (91) we observe that both expressions are very similar.
In fact, sinceg is an element of SQ,4) we can writeg as a matrix in the form\@ and therefore
the one-form(91) yields

"= ofBdy + wlALB dx*, (93

where of*®= A3 AZ. This expression can be written as

%= P dy' + wia dx* (99

and
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o™= o dy' + o} dxt. (95)

The bas€49a) and(49b) arises from(94) and(95) by defininge?’ = w?®, e = > and settingo®

i
equal to zero. This means that we can weitd) in the following form:

5a ab,
A [ @n (X)) @ (X))
= ) 96
o ( 0 W™y 99
Therefore, the metrigy,y in (39) becomes
YMN = 3 O ONAB (97

and consequently the LagrangigdD) can be written as

L =~ Mo(~ 3oponagd "X H2, (98)

Thus, the corresponding line element is

dSZ = %O)QB(UNAB dXM dXN, (99)

which is in agreement with the Fukuyama’s suggesjt?dNe shall call the system described by the
Lagrangian(98) with wi given by (96) the de Sitter top

There are several observations that one can make from our analysis but perhaps one of the
most important is the fact that the top theory leads naturally to consider the de Sitter group
SQ1,4) [or anti—de Sitter group S@,3)] via the connectiomﬁ,,B. As it is well known, this group
structure appears in several fronts of current interest, including Maldacena’s conjecture in string
theory, accelerated universe, and the gravitational gauge approach of MacDowell-Mansouri. For
this reason it turns out to be of particular interest for further research to study the possible
connection between the de Sitter top and these lines of research.

On the other hand, since in the Kaluza—Klein M+D-dimensional space the metric gives
gravity, Yang—Mills, and scalar fields, a top moving in this space will be acted on by these fields.
It may be interesting to see how the Yang—Mills field, which can be understood as the field which
generates rotations in the isospace, affects the motion of the top. In Ref. 27 some computations in
this direction were reported. We attach a brief review of such computations as an ap(sesdix
Appendix B). Part of our task, for further research, is to analyze these computations from the point
of view of the present work.

Finally, the Regge trajectoril) which lead us to the de Sitter relativistic top concept is a very
particular relation between the mass and the spin of a particle. In general, a singular Lagrangian
can lead to more general Regge trajectories of the f(B%). In particular, by using group
theoretical methods, Atre and Mukurideave developed a systematic procedure for other possible
Regge trajectories. In those cases one should expect generalizations or alternatives of the de Sitter
relativistic top which is based in the de Sitter group. From the group theoretical point of view,
however, such a generalization or alternative appears as an intriguing possibility motivating fur-
ther research on the subject.
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APPENDIX A
In this appendix we present the proof of formildb). From (7) and (10) we get

u?=N°P? + V2. (A1)
Similarly, from (9), (10), and(12) we find
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)\2
o= g3+ 282,

Here we also used the notatibd=b*"b
We shall compute

. fOr any tensoib*”.

o= O'MVO'VaO'aﬁ(TE'U'.
Observe first that
)\2

A
oo, = IR - (VIR VTP EPHpY - PAgrg,

where we used10) and(12). The expressioifA4) leads to

A \?
0_4: E2{4_'_ 4r_4p2v2 + 2§2§2P2P2,

(A2)

(A3)

(A4)

(A5)

where once again we usgfi0) and(12) and antisymmetric properties, such¥¢’¢,¢,=0.

We also need to compute
Uoou = u,c"’o,U,.
From (7), (9), (10), and(12) we find
v A 2
o*u, = FE"VVV— NPZEH,

Therefore, we have

1 2
Uoou=-— )\2<— FtVuE“”EV“Va + FPZVZ + P2P2§2>

or

1 2
Uoou= - kz(piaza”zwzﬂszﬁ + 5P+ P2P2§2> .
Now, let us define the dual of any antisymmetric ten&gg as

N %E'um’BAa,Ba

whereg#*"8 is the completely antisymmetric Levi—Civita tensor.
It turns out that from the constrait0) it follows

33, =0.
Using (A1l) it is not difficult to show that

SHVS, 30Tz = I3 RT(32),
Thus, using(A12) one finds thatA9) becomes
2 1 25 2 2 2\ /2 2p2¢2
Uoou=—N\ ?VE +r—2PV + PP ).

On the other hand, frorfA2) we obtain

(A6)

(AT)

(A8)

(A9)

(A10)

(A11)

(A12)

(A13)
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0?0’ = ?—:2222 + 4r—)f52p222 +4£282P?p2, (A14)

Therefore,(A5) and(14) imply
0?0? - 20" = 4r—7:2§2P222 - Sr—)fpzvz, (A15)

where we used the fact that frofA12) it follows that

254-3252=0. (A16)
Now, define
1
deto= Zs””aﬁsf}“’pam\a'w\awa'ﬁp. (A17)
It is not difficult to show that
deto=- %(0'* )2 (A18)
From the identity
U"“O'HBO'B”= - %0‘“”(0‘2) - %0'*’“’(0'* o), (A19)
we find
o*= 10?0+ 3(0* a)(o* o). (A20)

Therefore, by combiningA18) and (A20) we obtain

deto = ;(d%0? - 20%). (A21)
From (A15) we see thatA21) implies

\? %
deto= ?gzpzzz - P22, (A22)

Now, from (A13) and(A22) we see that

2 _2_122222 2221222122_2m(2)2 2p2
Uoou—r?det =\?| S GVARE - GPAVZ- PP - SRR 4 PRV | =) oV +meeP? |
(A23)
Using (A1) and (A2) one finally sees thatA23) leads to(15).

APPENDIX B

In 4+N’ dimensions, withN’=N+D, a top can be described by the variablé¥ ) and
EX'(T), wherexM are 4N’ coordinatesEX'(r) are 44N’ orthonormal vectorsr is an arbitrary
parameter and the indéxin parentheses labels the name of the vector. The veE%satisfy the
condition

Yun = EMEN7ag, (B1)

where yag=diag-1,1,....,2 is a scalar matrix andy, is the curved metric generalized to 4
+N’ dimensions.
Define the linear velocityM and the angular velocity™N as follows:
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oM
uM = . =xM, (B2)
MN_  ABEMA CN_ _
aN = EAdTE =—cg" . (B3)

Here, the symbolA/dr means covariant derivative with respect tp having the Christoffel
symbols FR,"P as the connection. One sees thaf\ is again antisymmetric by virtue of the
condition (B1).

Consider a top with linear velocity™, angular velocitya™N, linear momentunPM, and
internal angular momentu®N. We will assume that the dynamics of the system is generated by
the Lagrangian

L=-uMPy — 26™MNSyy + NH + Ay HM, (B4)
where
H= PPy, - f(:8"Ngy0) (BS)
and
HM = S¥Np (B6)

corresponds to the Regge and Tulcyzjew constraints, respectively, generalizedNtoddren-
sions. Here\ and\,, are Lagrange multipliers.

Using the LagrangiafB4) and assuming the equivalence principle inNf+dimensions leads
to the RTEM equations of motion generalized to higher dimensions,

APM 1
FERar Tl ®7)
and
ASYN
. = PMu - PNM, (B8)

Here, AAM/dr=(dAM/d7)+ T \ANUP, whereAM is any vector andR\p, is the Riemann tensor.
Using the constraint™=0 one sees fronB8) thatJ2=3S"NS, is a constant of the motion.
Using this fact and the constraikt=0 one can show th&“P,,=-M? is also a constant of the
motion.
We will follow the strategy of doing the computations in therizontal lift basedefined by the
commutator¥ 9

[D,.D,]=-F2,D,,
[D,,D.]=0, (B9)

[Dav Db] = f;ch-
Therefore the only nonvanishing commutation coefficients are

wa =- Ffw (B10)

and
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Con=fan- (B11)
In the basgB9) the metric associated withl* X N’ is
. (9w O )
MMN = ( : (B12)
MN 0 Jab
with
Da9u,» =0,

chab = 1:cab"' fcbav
Dp,gab = ‘?p,gab - A‘;chab =0ablu

Da9ur = 9pva- (B13)
The Christoffel symbols are given in a noncoordinate base by

Tvine = 3(Dpwin + Dnp = Dnie) + 3(Cuine + Cupn = Crpw) (B14)
and the Riemann tensor is given by
AM  _y 1M M L MR ™M R _ M ~R
Rupq= Del'Ng ~ Dal'ng * I'rel'Ng ~ 'Rl 'Np ~ I'NrCro- (B15)
The linear velocityuM, angular velocityg™N, linear momentunPM, and internal angular

momentumS“N will be referred to below with respect to the “horizontal lift base” define(g8).
By using(B12)—«B15) one may reduce the equations of moti@Y) to four dimensions,

DIT# .
& = - SR QUS4 QFHUY + 125 #MEP + 70, (B16)

Here the following definitions were used:

I1# = Pt — 50, FA2S™, (B17)
Qa = gabpb + fllgabfges:e*' %gabFzﬁsaﬁ + %g ab|asabr (818)
M5 = gapUPS™ + gopuPS™ — g,puS™, (B19)

and

7= [(UPPP = JF2u S + F2 SPUP — 2070 1 UPS™) = 507G 1l U ST+ (3, + 2+ 2 )UeS™
~ (RS ]gap” + 50an” oS0 (B20)

Here, the symbogab“’“;a means

M
Gan” i = G la T {ﬁa }gab|B ,

wheregab‘” is defined in(B13), while the symboF~%; ; means

Fga;ﬁz F’Za.lg"' H Fga— 7 Fg_a.
af Ba
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In terms of the definitiongB17) and(B19) the equation of motiorB8) leads to

D&

T

1
=IT4u” - IT"u* + E(F““aMZa— MACE) + HAY, (B21)
where

H#Y = Sua'v'bgably - Svaubgabm'

Clearly, Eqgs.(B16) and (B21) are generalizations of the usual four-dimensional case. One can
show that the quantit®, given in (B18) is a constant of the motion. It turns out th@f can be
interpreted as charges of the system. For details the reader is referred to Ref. 27.

T Regge, Nuovo Cimentd4, 951 (1959.
2T. Regge, Nuovo Cimentd8, 947 (1960).
3A. Hanson and T. Regge, Ann. Physl.Y.) 87, 498(1974.
4A. Hanson, T. Regge, and C. Teitelboi@onstraint Hamiltonian Systetcademia Nazionale dei Lincei, Roma, 1976
5J. H. Schwarz, Phys. Rej89, 223(1982.
5N. Mukunda, H. van Dam, and L. C. BiedenhaRRelativistic Models of Extended Hadrons Obeying a Mass-Spin
Trajectory ConstraintLecture Notes in Physics, Vol. 165pringer, Berlin, 1982 R. R. Aldinger, A. Bohm, P. Kiel-
anowski, M. Loewe, P. Magnolly, N. Makunda, W. Drechsler, and S. R. Komy, Phys. R&8, 3020(1983.
M. V. Atre and N. Mukunda, J. Math. Phy£7, 2908(1986); 28, 792(1987.
8M. B. Green, J. H. Schwarz, and E. WitteByperstrings TheorgCambridge University Press, Cambridge, 198M0ls.
I and II; M. Kaku, Introduction to SuperstringéSpringer-Verlag, Berlin, 1990
D. Chistodolou and R. Ruffini, Phys. Rev. B 3552(1971).
10R. Muradian, Phys. Part. Nuck8, 471(199%.
1p_A. M. Dirac, Lectures in Quantum Mechani¢¥eshiva University, New York, 1964
2y, Tulczyjew, Acta Phys. Pol18, 393(1959.
133. A. Nieto, Phys. Lett.147B, 103(1984).
3. A. Nieto and S. A. Tomas, Phys. Lett. B32, 307 (1989; J. A. Nieto, Nuovo Cimento Soc. Ital. Fis., BO9B, 411
(1994).
15p, K. Townsend, Phys. Rev. 5, 2795(1977.
165, W. MacDowell and F. Mansouri, Phys. Rev. Le38, 739 (1977.
T, Fukuyama, Gen. Relativ. Gravil4, 729 (1982.
18y M. Cho, J. Math. Phys16, 2029(1975.
19Y. M. Cho and P. G. O. Freund, Phys. Rev. 12, 1711(1975.
20\, Mathisson, Acta Phys. Pol, 163(1937).
2\, H. Pryce, Proc. R. Soc. London, Ser. 295 62 (1948.
22 Papapetrou, Proc. R. Soc. London, Ser281, 248 (1951).
2. G. Dixon, Proc. R. Soc. London, Ser. 314, 499(1970.
24W. G. Dixon, Proc. R. Soc. London, Ser. 319, 509(1970.
253, Hojman, Ph.D. thesis, Princeton University, 1975.
%A, Bohm, M. Loewe, P. Magnollay, M. Tarlini, R. R. Aldinger, L. C. Biedenharn, and H. van Dam, Phys. R&82, D
2828(1985; A. Bohm, M. Loewe, and P. Magnollayhid. 32, 791(1985; 31, 2304(1985.
273, A. Nieto, Ph.D. thesis, University of Texas at Austin, 1986.



JOURNAL OF MATHEMATICAL PHYSICS46, 012303(2005

No self-interaction for two-column massless fields

Xavier Bekaert?
Dipartimento di Fisica, Universita degli Studi di Padova, INFN, Sezione di Padova, via F.
Marzolo 8, 35131 Padova, Italy

Nicolas Boulangerb)
Department of Applied Mathematics and Theoretical Physics, Cambridge CB3 OWA,
United Kingdom

Sandrine Cnockaert®
Physique Théorique et Mathématique and International Solvay Institutes, Université Libre
de Bruxelles, C.P. 231, Bld. du Triomphe, 1050 Bruxelles, Belgium

(Received 21 July 2004; accepted 11 September 2004; published online 3 Janugry 2005

We investigate the problem of introducing consistent self-couplings in free theories
for mixed tensor gauge fields whose symmetry properties are characterized by
Young diagrams made of two columns of arbitréoyt differeny lengths. We prove

that, in flat space, these theories admit no local, Poincaré-invariant, smooth, self-
interacting deformation with at most two derivatives in the Lagrangian. Relaxing
the derivative and Lorentz-invariance assumptions, there still is no deformation that
modifies the gauge algebra, and in most cases no deformation that alters the gauge
transformations. Our approach is based on a Becchi-Rouet-Stora-TRRIBT)
-cohomology deformation procedure. ZD05 American Institute of Physics.

[DOI: 10.1063/1.1823032

I. INTRODUCTION

These last few years, mixed symmetry gauge figl@s, that are neither completely symmet-
ric nor antisymmetrig have attracted some renewed attentiofl,thereby reviving the efforts
made in this direction during the 1980s, under the prompt of string field tH&3AMixed-
symmetry fields appear in a wide variety of higher-dimensigbal4) contexts. Indeed, group
theory imposes that first-quantized particles propagating in flat background should provide repre-
sentations of the Poincaré group. The cd3es,4 arevery particular in the sense that each tensor
irreducible representatiogirrep) of the little groups @) and Q3) is equivalent to a completely
symmetric tensor irrepictured by a one-row Young diagram with columns for a spirs
particle. WhenD >4, more complicated Young diagrams are allowed. For instance, all critical
string theory spectra contain massive fields in mixed symmetry representations of the Lorentz
group. In the tensionless lim{tz’ — ) all these massive excitations become massless. Another
way to generate various mixed symmetry fields is by dualizing totally symmetric fields in higher
dimensions’®

An irrep of the general linear group @R, R) is denoted byc,,c,, ... ,c ], wherec; indicates
the number of boxes in theh column of the Young diagram characterizing the corresponding
irrep. We will focus on theories describing gauge fiewla...ﬂp‘vl,..,, whose symmetries corre-
spond to the Young diagrafp,q] formed by two columns of arbitrargbut differeny lengthsp
andq (p>q). The physical degrees of freedom for such theories correspond to a traceless tensor
carrying an irrep of the little group @ -2) associated with the Young diagrdm, q]. Therefore,
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we will work in space—time dimensidd = p+q+2 so that the field carries local physical degrees
of freedom. Such fields were studied recently at the free level in anti-de Sitter back@r%’dnd.

the sequel, we will frequently use a loose terminology by referring to a tensor irrep by its Young
diagram.

In the present paper, we address the natural problem of switching on consistent self-
interactions amongp, q]-type tensor gauge fields in flat background, whpreq. As in Refs.
15-20, we use the BRST-cohomological reformulation of the Noether method for the problem of
consistent interactiorfs.For an alternative Hamiltonian-based deformation point of view, see Ref.
22. The question of consistent self-interactions in flat background has already been investigated in
the case of vectofi.e., [1,0]) gauge fields in Ref. 15p-forms (i.e., [p,0]-fields) in Ref. 16,
Fierz—Pauli[1,1]-fields in Ref. 17,[p, 1]-fields (p>1) in Ref. 18,[2,2]-fields in Ref. 19, and
[p,p]-fields (p>1) in Ref. 20. Here, we extend and strengthen the results of Ref. 18 by relaxing
some assumptions on the number of derivatives in the interactions. The present work is thus the
completion of the analysis of self-interactions fbitrary [p,q]-type tensor gauge fields in flat
space.

Our main(no-go result can be stated as follows, spelling out explicitly our assumptions.

Theorem: In flat space and under the assumptions of locality and translation-invariance,
there is no consistent smooth deformation of the free theorypfay]-type tensor gauge fields with
p# g that modifies the gauge algebra. Furthermore, for 3, when there is no positive integer n
such that p-2=(n+1)(q+1), there exists no smooth deformation that alters the gauge transfor-
mations either. Finally, if one excludes deformations that involve four derivatives or more in the
Lagrangian and that are not Lorentz-invariant, then there is no smooth deformation. at all

The paper is organized as follows. In Sec. I, we review the free theokp,of]-type tensor
gauge fields. In Sec. lll, we introduce the BRST construction for the theory. Sections IV-VII are
devoted to the proof of cohomological results. We compitte) in Sec. IV, an invariant Poincaré
lemma is proved in Sec. V, the cohomologh(5|d) andHP ™(8|d) are computed, respectively,
in Secs. VI and VII. The self-interaction question is answered in Sec. VIII. A brief concluding
section is finally followed by three appendixes containing the proofs of three theorems presented
in the core of the paper.

Il. FREE THEORY

As stated above, we consider theories for mixed tensor gauge flt;jldsﬂ vy whose
symmetry properties are characterized by two columns of arbitbartydiffereny lengths. In other
words, the gauge field obeys the conditions

¢M1"'Mp\vl"'vq = d’[ﬂl'“up]\vl'“vq = ¢/-’«1' “ppllyy. gl

¢[M1’ “wplvlvy vy =0,

where the square brackets denote strength-one complete antisymmetrization.

A. Lagrangian and gauge invariances

The Lagrangian of the free theory is

- —1 P1 " PgM1 'Mp+]]]é)[0’1¢ g '(rp+1]‘

T 2(p+ g T e

Vl' N 'Vq
Py -pqa[ﬂld’ #z = pipe] '

where the generalized Kronecker delta has strength one. This Lagrangian was obtaiji2et]-for
fields in Ref. 11, fofp, 1]-fields in Ref. 12 and, for the general casd pfq]-fields, in the second
paper of Ref. 5.

The quadratic action
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Slél= f d®x L(d¢) 1)

is invariant under gauge transformations with gauge parametePsand o> that have respec-

tive symmetrie§p-1,q] and[p,g—1]. In the same manner gsforms, these gauge transforma-
tions arereducible their order of reducibility growing wittp. We identify the gauge fielg with

%9 the zeroth order parameter of reducibility. The gauge transformations and their reducibilities
are (we introduce the short notatiop;=[u- - u,]; @ comma stands for a derivativey,
=J,a)

(W)} — (i+1.) (ALY (D)
Uity ~ Timn® sz sy gy * OBy g i aqe) B g o gl -yt )
2
wherei=0, ... p—q andj=0,... g. The coefficientsy ; andb;; are given by
(p—1i)! i (P-q+j+2)
qj= N ; | Ny bi,j:(_)l+-
(p=i—g+j+Dl(q-)! (p-i-gq+j+2)

To the above formulas, we must add the convention that, foj,alP- 4% =0=a0-9*D, The
symmetry properties of the parameters! are those of Young diagrams with two columns of
lengthsp—i andg—j. More details on the reducibility parameterl%l{)“# — will be given in
Sec. Il B. e

The fundamental gauge-invariant object is the field strekgtie[p+1,q+1]-tensor defined
as the double curl of the gauge field

K#l‘ ' ‘Mp+1| Ve (?[Mld) #2”'#p+1]|[”1' Vg Vgeal®

By definition, it satisfies the BianchBIIl) identities

&[“lK = 0, K

Mot ',U«p+2:H V1 Vgl My 'Mp+1‘["1' . -vq+1,vq+2] =0. (3)

The field strength tensdf plays a crucial role in the determination of the physical degrees of
freedom described by the acti&j[ ¢].

B. Equations of motion

The equations of motion are expressed in terms of the field strength,

oL 1

G M- -:U“pl = = P1 " Pg+1M1 " MD%K a1 'Up+l| ~
Vl. ..Vq V.. _Vq + 1 1Al Vl-*-yqu'l---u'p_'_l pl"'Pq+1
5 1y ) (p+D!q!

3

where a weak equality=" means “equal on the surface of the solutions of the equations of
motion.” This is a generalization of vacuum Einstein equations, linearized around the flat back-
ground. Taking successive traces of the equations of motion, one can show that they are equivalent
to the tracelessness of the field strength,

nglle‘Tl‘“‘Tp+1‘P1“'Pq+1 ~0. 4)

This equation generalizes the vanishing of the Ricci tefisathe vacuuny, and is nontrivial only
whenp+qg+2=<D. Together with the “Ricci equation(4), the Bianchi identitie$3) imply3

d”1K ~ 0= ¢"K

01 OpealPr P 71 Opealpy Pgey (5)

The gauge invariance of the action is equivalent to the divergenceless of the GHigbi, that
is, the latter satisfies the Noether identities
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I”1G =0=0"G

o Opalpr Pgra 0y 0pealPy P (6)

These identities are a direct consequence of the Bianchi(@neEhe Noether identitiegs) ensure
that the equations of motion can be written as

0~ GHr Hplvrvg = aaHaul"',up\Vl"'vq ,

where

H @k Rl Pr"pqaur"up]]lg[ﬁ & oy -opll

T (p1)lgl oo Py Py’

The symmetries of the tensbt correspond to the Young diagrdmp+1,q]. This property will be
useful in the computation of the local BRST cohomology.

C. Physical degrees of freedom

The “Ricci equation”(4) states that, on-shell, the field strength belongs to the el ,q
+1] of O(D-1,1). The Bianchi identities together wiits) further imply that the on-shell nonva-
nishing components of the field strength belong to the unitary ifeg] of the little group
O(D-2). Indeed, on-shell, gauge fields in the light-cone gauge are essentially field strg‘ngths,
and the “Ricci equation” takes the form

14 .. . =~
b} ¢'1”"p“1"'lq 0,

wherei and|j denote light-cone indice§,j=1,... D—-2). As a consistency check, one can note

that the latter equation is nontrivial only whgntq=D-2. The theory describes the correct
physical degrees of freedom of a first-quantized massless particle propagating in flat space, i.e., the
latter particle provides a unitary irrep of the group(DD>-1,1).

We should stress that the exact analogue of all the previous properties hold for arbitrary mixed
symmetry fields. This result was obtained by two of us and was mentioned in Ref. 7 but the
detailed proof was not given ther@ he proof presented in this pap@ppendix A) provides an
indirect proof that the light-cone gauge is reachafde that the theory describes the correct
number of physical degrees of freedprie would like to underline the fact that Refs. 3 and 5
assumgbut do not contain any rigorous proof)ahis fact. It would not be straightforward to
prove it directly because the tower of ghosts is extremely complicated in the genergl\Wase.
take the opportunity to provide this extremely simple proof in Appendix A for the particular case
of two-column gauge fields, since it already covers all the features of the general case for arbitrary
mixed tensor gauge fields.

Ill. BRST CONSTRUCTION
A. BRST deformation technique

Once one has a consistent free theory, it is natural to try to deform it into an interacting theory.
The traditional Noether deformation procedure assumes that the deformed action can be expressed
as a power series in a coupling constgnthe zeroth-order term in the expansion describing the
free theoryS,. The procedure is perturbative: one tries to construct the deformations order by
order in the deformation parametgr

Some physical requirements naturally come out.

0] Nontriviality: We rejecttrivial deformations arising from field redefinitions that reduce to
the identity at ordeg®,

¢— ¢'=d+g0($,0¢, ...) + O(F). (7

(i)  ConsistencyA deformation of a theory is calledonsistentif the deformed theory pos-
sesses the same numbel(dssibly deformegindependent gauge symmetries, reducibility
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identities, etc., as the system we started with. In other words, the number of physical
degrees of freedom is unchanged.

(i)  Locality: The deformed actior§ ¢»] must be alocal functional. The deformation of the
gauge transformations, etc., must be local functions, as well as the field redefinitions.

We remind the reader that a local function of some set of figlds a smooth function of the
fields ¢' and their derivativesi¢', #¢',... up to somefinite order, sayk, in the number of
derivatives. Such a set of variables d¢', ... ¢ will be collectively denoted by¢']. Therefore,
a local function of¢' is denoted byf([¢']). A local p-form (0<p=<D) is a differentialp-form, the
components of which are local functions,

1 )
w:awﬂl"'ﬂp(x'[¢l])dxﬂl O --- Odx*.

A local functional is the integral of a loc@-form.

As shown in Ref. 21, the Noether procedure can be reformulated in a BRST-cohomological
formalism: the first-order nontrivial consistent local interactions are in one-to-one correspondence
with elements of the cohomolody®%(s|d) of the BRST differentiak modulo the total derivative
d, in maximum form-degre® and in ghost number 0. That is, one must compute the general
solution of the cocycle condition

séP0+dpP1i=0, (8)

whereaP? is a top-form of ghost number zero abh®** a (D - 1)-form of ghost number one, with
the understanding that two solutions @ that differ by a trivial solution should be identified,

aD’O —_ aD,O+ SI'TP’_1+ an—l,O,

as they define the same interactions up to field redefini{ionshe cocycles and coboundarigs
b, m, n,... arelocal forms of the field variable@ncluding ghosts and antifielgls

B. BRST spectrum

In the theories under consideration and according to the general rules of the BRST-antifield
formalism, one associates with each gauge paramétéia ghost, and then to any fiefthcluding
ghost$ a corresponding antifielgbr antighosy of opposite Grassmann parity. More precisely, the
spectrum of fieldgincluding ghostsand antifields is given by

(i) the fields A(L’g) . whereA®0 is identified with ¢;
P11t 19
(i)  the antifields A" () #p-itl1a-i),

wherei=0, ... p—qandj=0,...,g. The symmetry properties of the fielad and anti-

Mp-i1"[a-j]
fields A*()) #p-i1a-i] are those of Young diagrams with two columns of lengths andq-j. To
each field and antifield are associated a pure ghost number and an a(tifiafdighost number.
The pure ghost number is given by | for the fieldsA®) and 0 for the antifields, while the
antifield number is 0 for the fields ariéj+1 for the antifieldsA"(). The Grassmann parity is
given by the pure ghost numbéar the antighost numbemodulo 2. All this is summarized in
Table 1.

TABLE |. Symmetry, pure ghost and antighost numbers, and parity of the
(antifields.

Young puregh antigh Parity

A [p-i.q-i] i+] 0 i+]
A0 [p-i.q-i] 0 4L il
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[p,0} (2¢ < p)
7 //
// lg+i,q-i+1] //
/
K .\ g
lga] e lg+i-1,q—i+1] [g+iq—i] - o [p2g—p] (22 p)
\

FIG. 1. Antighost-zero BRST spectrum [gf, q]-type gauge field.

One can visualize the whole BRST spectrum in vanishing antighost number as well as the
procedure that gives all the ghosts starting fr¢rﬂp]|v[q] in Fig. 1, where the pure ghost number

increases from top down, by one unit at each line.
At the top of Fig. 1 lies the gauge fielqdﬂ[p]w[q] with pure ghost number zero. At the level

below, one finds the pure ghost nhumber one “gauge parameﬁ@r@” | (0'1)|
) ) ] ) ) Hp-1]"q] Hlpll -1
respective symmetries are obtained by removing a box in th&@spectively, seconaolumn of

the Young diagranip,q] corresponding to the gauge fieldﬂ[p]‘,,[q] [the rules that give théi
+1)th generation ghosts from théh generation ones can be found in Refs. 4 anp 14

whose

(1,0) (0,1)
Pipa) Aplig Appg-1)

In pure ghost numbegp—q, we obtain a set of ghosts containinéi_]qf[’)f[q,q]. The Young
ql'"lq

diagram corresponding to the latter ghost is obtained by remoping boxes from the first
column of[p,q].
If q<p-g, we do not have to reach the pure ghost lepelq to find the p-form ghost
Ai?[g)~[p,0]. If 2q=p, we must remove additional boxes from the second columipgaf] in
(0.0)

order to empty it completely and obtain thpeform ghostAM[ e
p.

remaining ghosts are obtained by further removing boxes from the Young diagram corresponding
to the ghosﬁf{’q]) with puregh=g. This procedure will terminate at pure ghost numpevith the

The Young diagrams of the

g-form ghostAip["Jq"‘)~[q,0]. It is not possible to find ghost& with r ands<gq, since it
q

g
would mean that two boxes from a same row would have been removed frah which is not
allowed®***
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The antighost sector has exactly the same structure as the ghost sector in Fig. 1, where each
ghostA®) is replaced by its antighog{ ().

C. BRST differential
The BRST differentiak of the free theory1) and(2) is generated by the functional

pP-q q
Wo =Sl ¢] +f dDX[E > (=) A DR ppeilvr v
i=0 j=0
(i+1,) _h Al
X(a[ﬂlAMz“‘Mp—i]\Vl"'Vq—j b'+1vJAﬂ1"'Mp—i\[V1'"Vq—j—lqu—j]) !

with the convention thafP-a*1)=Al.a*D=A"LD=A"(.-D=0, More preciselyW, is the genera-
tor of the BRST differentiak of the free theory through

SA= (WO!A)a.b.!
where the antibrackst), , is defined by

FAsB_FASB
D' 5b; 6D, 5D

(Av B) a.b. =

®' collectively denoting all fields and ghosts, aﬂﬂ the antighosts. The functiond\, is a
solution of themaster equation
(WOyWO)a_b_ =0.

The BRST-differentials decomposes intg=y+ 4. The first piecey, the differential along the
gauge orbits, increases the pure ghost number by one unit, whereas the Koszul-Tate differential
decreases the antighgst antifield number by one unit. A-grading callecghost numbecor gh)
corresponds to the differential We have
gh = puregh - antigh.
The action ofy and § on the BRST variables is zero, except
YAl = i, AL + by (ALY +a, Al

Hip-ilVa-i1 w2+ ppill gy Hip-ilg-j-ap vl I gl ig-jea e Rpnil g -1 k- p:

SAH0.0u1p]Mq) = GHpIMa) ,

SAM D il Mg-j] = (—)i+j<&0A*(i_lxj)0'#[p—i]V[q—j] - aaA*(i_lvj)Vll‘-[p—i]‘TVZ"'Vq—j)

p-i+1
+ (= )y g A Dk e

where the last equation holds only farj) different from(0, 0).
For later computations, it is useful to define a unique antifield for each antighost number,

j
C;ﬂ'_'j'ﬂth'“”j = Z €kjA*(p_q_j+qu_k)M1'"Mq[Vk+1'“Vj|V1“'Vk]
k=0

for 0<j=p, and, in antighost zero, the following specific combination of single derivatives of the
field:
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TABLE II. Young representation, pure ghost and antighost numbers, and
parity of Cy.

Young diagram puregh antigh Parity

Ci [al®[p+1-k]-[p+1]®[g-K] 0 k k

CBMI “hglvevpel =

= €qprH™” Hlvger - vpralvr g I

where ¢ ; vanishes folk>q and forj—k>p—q, and is given in the other cases by

vl
€ =(- )pk+j(k+p+q)+[k(k+l)/2]M
J k !
q
where(r,?) are the binomial coefficientén=m). Some properties of the new variabl€s are
summarized in Table II.
The symmetry properties oﬁ; are denoted by
[al@[p+1-kK]-[p+1]®[q-kK]

which means that they have the symmetry properties corresponding to the tensor product of a
column[q] by a column[p+1-k] from which one should substragivthenk=<q) all the Young
diagrams appearing in the tensor prodyzt 1] [g—k].

The antifieldsC, “Hial 149 have been defined in order to obey the following relations:

mpﬂ‘_‘jﬂq\”l‘“”' = C #1 Mq\Vl vjo for O <] < p,

6C8’uf gl e = (9)

If we further define the inhomogeneous form

p+l
FIA By = *D—jug e p,
My 1
H#1 4= 2 Cp+1 =j 9,
j=0
where
) o 1
*D-jpg by — (— \iPHG+DR2___ = ~f g pgvr ey Visl ... dx'D
Cpid (=) (D= Cp+1_] €pye OXT ax’o,

then, as a consequence(8), any polynomiaIP(H) in Ha g will satisfy

(5+d)P(H)=0. (10)

The polynomialﬁ is not invariant under gauge transformations. It is therefore useful to still
introduce another polynomigl, with an explicitx dependence, thé invariant.H is defined by

p+l
= > CPP I 3¢ KA 191p+11x71 fx"2 - - - dXD-P-a-1
Mg § 1K) (41 p+1)TD-p-q-11] ’

wherea= ( —)tple-D+al@-112l 1 /qiql (p+q+1)! (p+1-q)!(D-p- g-1)!]. One can check that/=H
+dmp "2 This fact has the consequence that polynomlarsclalso satlsfy(5+d)P(H) 0.
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\\:m

{1} AGD (2}
1 2
d / \\g

ACi+1.7) AGg+D)

FIG. 2. GhostA®") appearing in only one reducibility relation.

IV. COHOMOLOGY OF vy

We hereafter give the content ¢f(y). Subsequently, we explain the procedure that we
followed in order to obtain that result.
Theorem 4.1: The cohomology of is isomorphic to the space of functions depending on

(i)  the antifields and their derivativegg\" (],

(i)  the curvature and its derivativg],

(i) the pth generation ghost/®%? and

(iv) the curl Ef;l,,,#pﬂz(—)qa[# AL  of the gth generation ghost®,

1 M2 Mp+l

H(y) = {f((A"V],[K],AP~%9 DO )}

1 Hpel

Proof: The antifields and all their derivatives are annihilatedjbysince they carry no pure
ghost degree by definition, they cannot be equal tojthariation of any quantity. Hence, they
obviously belong to the cohomology of

To compute they-cohomology in the sector of the field, the ghosts and all their derivatives,
we split the variables into three sets imidependentvariables obeying, respectivelyu®=v¢,
=0, andyw'=0. The variablesi® andv® form so-called “contractible pairs” and the cohomol-
ogy of y is therefore generated by the variables(see, e.g., Ref. 23, Theorem 8.2

We decompose the spaces spanned by the derivaiL\{engA<i’i), k=0, O<i<p-q, 0<j
<q, into irreps of GLD,R) and use the structure of the reducibility conditigese Figs. 2 and)3
in order to group the variables into contractible pairs.

We use the differential operatodé!, i=1,2,...(see Ref. 4 for a general definitipwhich act,
for instance, on Young-symmetry-type tensor fielgs,;, as follows:

P Pel F
T B:]J(_J’ prdmrilE ol e

For fixedi andj the set of ghost&() and all their derivatives decompose into three types of
independent variables,
[AGD] OALD OdUALFD OdiZALI+D Ogiligi2aGi+D

where© denotes any operator of the typle,.d™ or the identity.

Different cases arise depending on the position of the #€iHl in Fig. 1. We must consider
fields that sit in the interior, on a border or at a corner of the diagram.

Interior: In this case, all the ghosts™}) and their derivatives form‘ or v* variables. Indeed,
we have the relations

Alid-1) Ali-14)

dﬂ;\\ /;( 1}
AGD
d(ﬂ)\\‘\

FIG. 3. GhostA®™) the reducibility relation of which involves only one ghost.
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),A(i,j) o [d{l}A(i+l,j) - d{Z}A(i'j+1>],
y[d{l}A(HlJ) - d{Z}A(i,i+l)] =0,
y[d{l}A(i+l'j) + d{Z}A<i'j+1)] o d{l}d{Z}A(i+1’j+1),

MdUd@AGID] =0,

andO commutes withy. From which we conclude that one can perform a change of variable from
the set{ A®))] to the contractible pairs

ul @A(i,i),(g[d{l}A(HlJ) + d{Z}A(ivi+l)],

vt o O[dUATLD — gRIAGI+D] OgiligRIATLITY

so that the ghosta) in the interior and all their derivatives do not appeaty).

Border: If a ghostA™) stands on a border of Fig. 1, it means that eittigits reducibility
relation involves only one ghoskee, e.g., Fig. 3 or (ii) there exists only one field whose
reducibility relation involvesA! (see, e.g., Fig. 2

(i)  SupposeAl)) stands on the left-handower) edge of Fig. 1. We have the relations

YA o ZAG+D
)/[d{z}A(i‘j+1)] =0,
y[d{l}A(i'j)] o d{l}d{Z}A(i,j’fl)'

MdWd@ALD] = 0,

so that the corresponding sé&)] on the left-hand edge do not contributeHdy). We
reach similar conclusion iA*) lies on the right-hanhighen border of Fig. 1, substituting
di¥ for d? when necessary.

(i)  Since, by assumptio®)) does not sit in a corner of Fig. (but on the higher left-hand or
lower right-hand bordey its reducibility transformation involves two ghosts, and we pro-
ceed as if it were in the interior. The only difference is ttat%d?A0) will be equal to
ei(thelg yOdBALITD or yOdPAI-11) depending whether the field abosé) is Ai-%) or
ATY,

Lower corner:On the one hand, we hav,d\ég C]'q =0. As the operatoy introduces a deriva-

tive, AEE o 9 cannot bey-exact. As a resulﬂ{p is aw'-variable and thence belongskigy). On

the other hand, we fmﬁiVA(p qq 3/[AV‘Llq L4 (- g/ (p+ 1)]A(p ol 1)] which implies that all
the derivatives ofA(P~9 do not appear |qu(y)

Left-hand corner:In this case, the ghosA") is characterized by a squared-shape Young
diagram(it is the only one with this properjy Its reducibility transformation involves only one
ghost and there exists only one field whose reducibility transformation invél{€s Because of
its symmetry propertiesf?AlD ~ dALD | Better,d?? is not well-defined o A1), it is only well
defined ond™A"). Therefore, the derivatives, ..., A" decompose int®A"?, OdMA®D, and
OdUdPALD, The first setA®) forms ul-variables associated witid A1), The second set
is grouped WithOd U@ AT+ , and the third one forms‘-variables WithOd@ A1),

Upper corner:In the case wherd(}) is the gauge field, we proceed exactly as in the “inte-
rior” case, except that the variablésli¥dZA©9=0 are not grouped with any other variables any
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longer. They constitute trua'-variables and are thus presentHiiy). Recalling the definition of
the curvaturek, we haveOdUdiZ A0« [K].

Right-hand corner:In this case, the field®A®) is the p-form ghostAEgj“). We have the
(u,v)-pairs (OdZACD OdUGZALD) (OdUACHD Oditigi2ACD),

The derivatived{l}AEng)ocDfpﬂ] is a w-variable since it is invariant and no other variable

dy,-u A" possesses the same symmetry. O

In the sequel, the polynomiala([K],[A*]) in the curvature, the antifields and all their
derivatives will be called “invariant polynomials.” We will denote Bythe algebra generated by
all the ghosts and the noninvariant derivatives of the figldhe entire algebra of the fields and
antifields is then generated by the invariant polynomials and the elemenfs of

V. INVARIANT POINCARE LEMMA

The space ofnvariant local forms is the space dfocal) forms that belong tdH(y). The
algebraic Poincaré lemma tells us that any closed form is gracept top forms and constapts
However, if the form is furthermore invariant, it is not guaranteed that the form is exact in the
space of invariant forms. The following lemma tells us more about this important subtlety, in a
limited range of form degree.

Lemma 5.1 (invariant Poincaré lemma in form degreefk +1): Let o* be an invariant local
k-form, k<p+1,

if do®=0, thena¥=Q(Kd*!

K1 Mper

) +dp,
where Q is a polynomial in theg+1)-forms

q+l K
By M 'ul'“Mp+1|V1”'Vq+

ax*1 - .- dXVq+1,
1

while <1 is an invariant local form

A closed invariant local form of form-degreedp+ 1 and of strictly positive antighost number
is always exact in the space of invariant local forms

The proof is directly inspired from the one given in Ref. @heorem 6.

A. Beginning of the proof of the invariant Poincaré lemma

The second statement of the lemfna., the case antigh*) # 0] is part of a general theorem
(see, e.g., Ref. 25vhich holds without any restriction on the form degree. It will not be reviewed
here.

We will thus assume that antigi€)=0, and prove the first part of Lemma 5.1 by induction.

Induction basis:For k=0, the invariant Poincaré lemma is trivially satisfied°¢0 implies
that «° is a constant by the usual Poincaré lemma.

Induction hypothesisThe lemma holds in form degrde such that G=k’ <k<<p+1.

Induction step:We will prove in the sequel that under the induction hypothesis, the lemma
holds in form degred.

Because =0 andya®=0, we can build a descent as follows:

do¥=00 of=da<10, (11)
0=ya b0+ dak2, .., (12)

0= yak i1+ dakiL, (13)
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0=yaI™, (14)

wherea' is ar-form of pure ghost numbeir. The pure ghost number @' must obey G<i
=<k-1. Of course, since we assurkecp+1, we havei <p. The descent stops &14) either
becauseé—j—1=0 orbecause*~} is invariant. The casg=0 is trivial since it gives immedi-
ately o*=dB“1, where g<1=a*10 is invariant. Accordingly, we assume from now on that
>0.

Since we are dealing with a descent, it is helpful to introduce one of its building blocks, which
is the purpose of the next section. We will complete the induction step in Sec. V C.

B. A descent of ¥ modulo d

Let us define the following differential forms built up from the ghosts:

DL = (_ )I(q+1)+q(;l[p' A(Orq_l) dXVl - dXVl,

1 Bpel 17 g ppellvr oy

for 0=<I=q. It is easy to show that these fields verify the following descent:

y(D )=0, (15

K1 Hp+r

y(D'*! )+le#1~ =0, 0<l=<q-1,

M1 Mper

dod ., =KIT (16)

1 Hpr1 - M1 Bper”

It is convenient to introduce the inhomogeneous form

q
— |
Dﬂl‘“ﬂpﬂ - % DM

1Ml

because it satisfies a so-called “Russian formula,”
— kat+l
Y+ Dy, =K 17
which is a compact way of writing the descegf) to (16).
Let wy,m be a homogeneous polynomial of degreén D and of degrea in K. Its decom-
position is

@nm(K,D) = N@D+ma0 L .y n(@rD+imenj 4oL 4 on(a+l)mg

where "V M} has form degrea(q+1)+j and pure ghost numbeng-j. Due to(17), the
polynomial satisfies

r?"w
(y+ dwgpm=KIL 0 (18)

My Mpel
aDMl' THpr1

the form-degree decomposition of which leads to the descent

A" TM9) =0,

W@ VLM =) 4 gyn@arHimai =g o< j<q-1,
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L 1),(m-1
(q+1)+g+1,(m-1)g-1 n(g+1)+q,(m-1)q — g+l 3—“’ niat1).(m-1)q
Yo" ) + dw =K : (19

Mq "/’«p+1l JD

K1 Hpr1
where[ dw/ 9D (M4 denotes the component of form degrég+1) and pure ghost equal to
(m-1)q of the derivativedw/JD. This component is the homogeneous polynomial of degree
-1 in the variableD®,
l ow }n(qﬂ),(m—l)q ow
Dy sy

F'»)

M1 Hpel

D=DY

The right-hand side of19) vanishes if and only if the right-hand side @f8) does.
Two cases arise depending on whether the right-hand(gideof (18) vanishes or not.

(i)  Therhs of(18) vanishes, then the descent is said not to be obstructed in any strictly positive
pure ghost number and goes all the way down to the bottom equations

,y(wn(q+1)+mq0) + dwn(q+l)+mq+1,1= 0’ o< J < q _ 1’

d(wn(q+l)+mqo) =0.

(i)  The rhs of(18) is not zero, then the descent is obstructed aftsteps. It is not possible to
find an@"@V*arLm-Da-1 gch that

@M@ DFarLm-1a-1y 4 ,N(@*+D+a.(m-1a =

because the rhs @19) is an element oH(y). This element is called thebstructionto the
descent. One also says that this obstruction cannot be lifted moreqthames, and
0" 1.Md s the top of the ladddin this case it must be an elementléfy)].

This covers the general type of laddeescent as well as lifthat does not contain thgth
generation ghosA(P=49.

C. End of the proof of the invariant Poincaré lemma

As j<p, Theorem 4.1 implies that the equati¢t¥) has nontrivial solutions only whep
=mq for some integem

ak—mq—l,mq: E ar—mq—lw?,mq, (20)
|

up to somey-exact term. Thed ™% %s are invariant forms, anfw’ ™% is a basis of polynomials
of degreem in the variableD®. The ghostA®%9 s absent since the pure ghost numbej is
=mag<p.

The equation(13) implies da:“m‘*lzo. Together with the induction hypothesis, this implies

af M = Py (K spe) + 9B -ma-2 (21

where the polynomial®, of ordern are present ifk—mag—1=n(q+1). Inserting(21) into (20) we
find that, up to trivial redefinitionsa*i=1 is a polynomial mKZ+1 e, andD

From the analysis performed in Sec. V B, we know that sucE\kaJnll can be I|fted at most
q times. Thereforea“”i~1i belongs to a descent of tyg&1)—~(14) only if j=q. Without loss of
generality we can thus taka 919= P(Kfjl o ,D% whereP is a homogeneous polynomial with
a linear dependence R° (sincem=1). In such a case, it can be lifted up ¢b1). Furthermore,
becausae 10 is defined up to an invariant forpg<1° by the equation(12), the term &< %C of

(11) must be equal to the sum
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dak—l,O — P(Kq+1,Kq+1) + d,Bk_l’O
=Q(K q+1

/'Lp+1)
of a homogeneous polynomi&) in K9*! (the lift of the bottom and a form d-exact in the
invariants. O

VI. COHOMOLOGY OF 6 MODULO d: H2(5|d)

In this section, we compute the cohomology&imodulo d in top form degree and antighost
numberk, for k=q. We will also restrict ourselves th>1. The groupH?(5| d) describes the
infinitely many conserved currents and will not be studied here.

Let us first recall a general theorgifheorem 9.1 in Ref. 26

Theorem 6.1:For a linear gauge theory of reducibility orderL,

HR(8d)=0 fork>p+1.

The computation of the cohomology groub$(6| d) for qsk=p+1 follows closely the
procedure used fop-forms in Ref. 24. It relies on the following theorems.

Theorem 6.2: Any solution oféaP+dbP1=0 that is at least bilinear in the antifields is
necessarily trivial

The proof of Theorem 6.2 is similar to the proof of Theorem 11.2 in Ref. 26 and will not be
repeated here.

Theorem 6.3: A complete set of representatives og’+§ﬂ§| d) is given by the antifields

dap.; +dag =00 ap,; = N4AC,, + dbp,,+ by,
where thenl#1#dl are constants
Proof: Candidatesany polynomial of antighost numbert 1 can be written

= Al 'uq]cp+l[,u1 “g] + Mp+l + 5bp+2 + dbp+1 J

whereA does not involve the antifields and whqr§+l is at least quadratic in the antifields. The
cocycle conditionsay),, +dap*=0 then implies

= Alerrrl dCpfEt |+ Sluge + dbRi) + dag =

By taking the Euler—Lagrange derivative of this equation with respeeg[tpl gl ON€ gets the

weak equatio”Al#r #d =0, ConS|der|ng/ as a form index, one sees thmbelongs td—lo(d| ).
The isomorphismH (d| 8)/R=H (5|d ) (see Ref. 2B combined with the knowledge of
HB(8]d)=0 (by Theorem 6.1 implies Alua#al= )\l uql4 gl #al where k1 +#al is a con-

stant. The termSv S Cp+1[ Lo u] can be rewritten as a term at least bilinear in the antifields up
to a 5-exact term. Inserting,,=N#1 #alC D)+ 0.+ <‘5pr,2+de?+l1 into the cocycle condi-
tion, we see thap,p+1 must be a solution oﬂug’ﬂf dbP~1=0 and is therefore trivial by Theorem
6.2.

Nontr|V|aI|ty It remains to show that the cocyclag 1= )\C -, are nontrivial. Indeed one can
prove that\C,,2, = dup,,+dvp. i implies that\C?; vanishes. Itis stralghtforward whery,, and

do not depend epr|C|tIy orR: dand d bnng in a derivative WhllECp does not contaln any
If u andv depend explicitly orx, one must expand them and the equati@);; = éu p+2 dvp+1
according to the number of derivatives of the fields and antifields to reach the conclusion. Explic-
itly, up,,=u r5r20 “+UD,p; and v oD ot +uphyy,. If n>1, the equation in degree+1
reads 0= dzp+1n Where d does not differentiate with respect to the explicit dependenge Tinis
in turn implies thatvl ! =d'opf ; and can be removed by redefining, v — oDt

d"erln - If1>n, the equat|on in degrele+1 is 0= éUp+2| and implies, together with the acy-
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clicity of &, that one can remov«rg+2| by a trivial redefinition ofu .- If 1=n>0, the equation in
degred +1 reads Oﬂj +2|+d’ D~ 1, Since there is no cohomology in antighost numbeR, this
|mpl|es thatup+ = ”+8' 1t d’ p+2| _, and can be removed by trivial redef|n|t|on.°.1’?+2—>up+2
bUp+3| _, andv +l—>vp+1—dﬁ,'§’+21| 1 Repeatlng the steps above, one can remove aih and
Upiin for 1,n>0. One is left with\C.?, = 8uD,, ;+d'vpr . The derivative argument Used in the
case without explicik dependence now Ieads to the desired conclusion. O
Theorem 6.4: The cohomology groupsEr(I6| d) (k>1) vanish unless xD-r(D-p-1) for
some strictly positive integer. iFurthermore, for those values of HE(5| d) has at most one
nontrivial class
Proof: We already know thaHD(5| d) vanishes fork>p+1 and thatH .1(8]d) has one
nontrivial class. Let us assume that the theorem has been proved Ittxsaihctly greater tharK
(with K<p+1) and extend it t&. Without Ioss of generality we can assume that the cocycles of
HR(5|d) take the form(up to trivial termg a2 =\#1 " #pr1-kl"1 " 7C Dle 1V+";1 _ K+,uK, wherex
does not involve the antifields and is at least bilinear in the an%melds Taking the Euler—
Lagrange derivative of the cocycle condition with respect (IQ , implies that )\’”1 K
=N gy vy dx#1 --- dx#er1x defines an element daip+1 K(d| o). If \ is d-trivial moduI05
then itis stralght?orward to check tha€,” " is trivial or bilinear in the antifields. Using the
isomorphismHE"*™(d| ) =HB_,_1 .«(d] d) we see thah must be trivial unles®-p-1+K=D
-r(D-p-1), in which caseHD_p_l+K(5|d) has one nontrivial class. Sindé=D-(r+1)(D-p
-1) is also of the required form, the theorem extend&io O
Theorem 6.5:Let r be a strictly positive integer. A complete set of representativei’(zﬂld)
[k=D-r(D-p-1)=q] is given by the terms of form-degree D in the expansion of all possible
homogeneous ponnomiaIs(f-ﬁ’) of degree r in~H[or equivalently R’ﬂ) of degree r in7~i].
The proof of this theorem is given in Appendix B.
These theorems give us a complete description of all the cohomology glﬁﬁ(@d) for k
=q (with k>1).

VII. INVARIANT COHOMOLOGY OF & MODULO d, H™(4|d)

In this section, we compute the set of invariant solutieﬁs(kz g) of the equationéakD
+db'=0, up to trivial termsag = sby,, +dc. ™, whereby,; andc.™* are invariant. This space of
solutlons is the invariant cohomology éfmodulo d,H,™(5|d). We first compute representatives
of all the cohomology classes ®;"(5|d), then we find out the cocycles without explicit
dependence.

Theorem 7.1: For k=g, a complete set of invariant solutions of the equatigay +dbp ;"
=0 is given by the proper component in the expansion of the polynomials in the curvéfire K

and in A (modulo trivial solutions)

sap + dbp = = P(K®LH)|P + S, + doR 72,
where 12, , and 2! are invariant forms
Proof: From the preceding section, we know that ker q the general solution of the equation
sag +dop =0 is al = Q(H)|k +omp,,+dng ™t where Q(H) is a homogeneous polynomial of de-

greer in H [it exists only wherk=D-r(D-p-1)]. Note thatm,[()+1 and nE"l are not necessarily
invariant. However, one can prove the following theorghe lengthy proof of which is given in
Appendix Q.

Theorem 7.2:Let af be an invariant polynomialk=q). If af =amg,,;+dn2™%, then

oy = RSVKILH)[R + Sy + A,

where F&)(K%*1, %) is a polynomial of degree s in%! and r in , such that the strictly positive
integers sr satisfy D=r(D-p-1)+k+s(q+1) and ug,, and v " are invariant forms
As al and Q(H)|Q are invariant, this theorem implies that
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a = POIKILH)[L + Sy + Ao,

where PED(KTL ) is a polynomial of non-negative degregn K%' and of strictly positive
degree in H. Note that the polynomials of nonvanishing degre& it are trivial in HE(5| d) but
not necessarily iH? ™(5]d). O

Part of the solutions found in Theorem 7.1 depend explicitly on the coordmam:auseﬂ:do
does. Therefore the question arises whether there exist other representatives of the same nontrivial
equivalence claggPs" (KQ+1,7~1()|E] € HE inv(5| d) thatdo notdepend explicitly orx. The answer
is negative whem> 1. In other words, we can prove the general theorem.

Theorem 7.3: When r> 1, there is no nontrivial invariant cocycle in the equivalence class
[P (K1, 7)[P] e HR ™(5]d) without explicit xdependence.

To do so, we first prove the following lemma.

Lemma 7.1: Let EKQ+1,7~1) be a homogeneous polynomial of order s in the curvatutegt K
andrin. If r =2, then the component H’(q"l,?”‘i)h? always contains terms of orderr(#0) in
Hlo. B _

Proof: Indeed,P(K%1,’H) can be freely expanded in terms @{|, and the undifferentiated
antighost forms. The Grassmann parity is the same for all terms in the expanﬁﬂrthﬂrefore
the expansion is the binomial expansion up to the overall coefficient of the homogeneous poly-
nomial and up to relative signs obtained when reordering all terms. Hence, the component
P (K% H)|° always contains a term that is a product (of-1) 7|5 "s, a single antighost
C;D'p‘l‘“k and s curvatures, which possesses the correct degrees as can be checked straightfor-
wardly. O

Proof of Theorem 7.3Let us assume that there exists a nonvanishing invaxiamdependent
representative®™ of the equivalence clag®s" (K31, 7)[P]e HP ™(5|d), i.e.,

PEOKILHIR + Spfhy + dof = o™, (22)

wherepp,; and o} ! are invariant and allowed to depend explicitly on
We define the descent mdipaj, — afi; such thataf+dafy 3 =0, forn<D. This map is well
defined on equivalence classesH#'(5|d) whenm> 1. Hence, going dowk—1 steps, it is clear

that the equationi22) implies

p(s,r)(Kq+1,7“_'{)|?—k+1+ 5p2D—k+1+ da_lD—k: alD—k+1,inv

with @21V,
We can decompose this equation in the polynomial degree in the fields, antifields, and all their
derivatives. Sinced and d are linear operators, they preserve this degree; therefore

~ —k —k- -k _ —k+1,i
P(S'r)(Kq+lyH)|?,r+;l + ‘SpZD,H;:L + dUlD,r+s - alD,l’+;l InV, (23)

wherer +s denotes the polynomial degree. The homogeneous polynm‘ﬁjﬂl'i“" of polynomial
degreer +s is linear in the antifields of antighost number equal to one, and depends on the fields
only through the curvature.

Finally, we introduce the number operatdrdefined by
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d

P1 p’d)’ul Mp‘vl qu?((?pl'"(9p,¢,u1“‘ﬂp\vl'“1/q)

* (9

+(r+1)d, 9, Pp - XH—

Ny 0y D) X

Where{CDZ\} denotes the set of all antifields. It follows immediately tAatnd d are homogeneous
of degree one and the degree7gfis also equal to one,

N(8) = N(d) = 1 =N(H).

Therefore, the decomposition M-degree of the equatio(23) reads inN-degree equal to=r
+2s,

sr +1 4\ |D-k+1 D-k+1 D-k _ D-k+1,inv
PSI(KA H)|1rss + OPs rasrazs-1 T Q0 rrr+os-1= Qlriarios (24)
and, inN-degree equal to>r+2s,
D-k+1 D-k — _D-k+1,inv
5pz,r+s,n—1 + d0-1,r+s,n—1 = Q1rign -

The componenu?;‘j;higg’ of N-degree equal to+2s is x-independent, depends linearly on the

(possibly differentiatedantighost of antifield number 1, and is of orders—1 in the (possibly
differentiated curvatures. Direct counting shows that there is no polynomi&l-degree equal to
r+2s satisfying these requirements whes 2. Thus forr =2 the componermlD;'j;};,'Q" vanishes,
and then the equatiof24) implies thatP(s" (Kq’f1,7-()|?;f;’1 is trivial (and even vanishes when
s=0, by Theorem 6.p

In conclusion, ifP(K9*, ) is a polynomial that is quadratic or more Hg, then there exists
no nontrivial invariant representative without expligitdependence in the cohomology class
[P(KT*L, H)] of H™(5|d). O

This leads us to the following theorem.

Theorem 7.4: The invariant solutions & (k=q) of the equationsa? +dbp'=0 without
explicit x dependence are all trivial in J4(5|d) unless kp+1-s(q+1) for some non-negative
integer s For those values of ,khe nontrivial representatives are given by polynomials that are
linear in G.°P* and of order s in K*.

Proof: By Theorem 7.1, invariant solutions of the equati#ay +db,'=0 are polynomials in

K91 andH modulo trivial terms. When the polynomial is quadratic or moréinthen Theorem

7.3 states that there is no representative without expliciependence in its cohomology class,
which implies that it should be rejected. The remaining solutions are the polynomials linear in
H|=C;PP* and of arbitrary order irke*1. They are invariant and independent, they thus
belong to the set of looked-for solutions. O

VIIl. SELF-INTERACTIONS

As explained in Sec. lll, the nontrivial first order deformations of the free theory are given by
the elements ofi®9(s|d), the cohomological group of the BRST differentidh the space of local
forms in top form degree and in ghost number zero. The purpose of this section is to compute this
group. As the computation is very similar to the computation of similar groups in the case of
p-forms® gravity!” dual gravity'® and[p, p]-fields?® we will not reproduce it here entirely and
refer to the works just cite¢e.g., Ref. 17 for technical details. We just present the main steps of
the procedure and the calculations that are specific to the cdgedgiffields.

The proof is given for a singlgp,ql-field ¢ but extends trivially to a seff¢® containing a
finite numbern of them (with fixed p and q) by writing some internal indea=1, ... h every-
where.
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The groupH(s|d) is the group of solutions of the equationsa+db=0, modulo trivial
solutions of the forma=sm+dn. The basic idea to compute such a group is to use homological
perturbation techniques by expanding the quantities and the equations according to the antighost
number.

Let aP? be a solution o6&+ dbP~11=0 with ghost number zero and top form degree. For
convenience, we will frequently omit to write the upper indices. One can exaéraP®) asa
=ay+a;+- - +a,wherea, has antighost numbeér The expansion can be assumed to stop at some
finite value of the antighost number under the sole hypothesis that the first-order deformation of
the Lagrangian has a finite derivative oretet us recaff* that(i) the antifield-independent piece
a, is the deformation of the Lagrangiafii;) the terms linear in the ghosts contain the information
about the deformation of the reducibility conditior{§i) the other terms give the information
about the deformation of the gauge algebra.

Under the assumption of locality, the expansionkoflso stops at some finite antighost
number. Without loss of generality, one can assumelijva@ for j=k. Decomposing the BRST
differential ass=vy+ 6, the equatiorsa+db=0 is equivalent to

5a1+ yao+db020,

5az+ 7a1+db1:0, ey
(25
o3y + yay-1+ dby1 =0,

Y3 =0.

The next step consists in the analysis of the tegmwvith highest antighost number and the
determination of whether it can be removed by trivial redefinitions or not. We will see in the
sequel under which assumptions this can be done.

A. Computation of g, for k>1

The last equation of the descef®5) is ya,=0. It implies thata,=a;0’ where a; is an
invariant form ande’ is a polynomial in the ghosts dfi(y): Aﬁf[_]q"*) and D?L[p " Inserting this
q +

expression fog, into the second to last equation leads to the resultdhahould be an element
of HZ'™(58]d). Furthermore, ifa is trivial in this group, thena, can be removed by trivial
redefinitions. The vanishing ME"”"(5| d) is thus a sufficient condition to remove the component
a from a. It is however not a necessary condition, as we will see in the sequel.

We showed that nontrivial interactions can arise only if sdﬂtﬁé”"(é\ d) do not vanish. The
requirement that the Lagrangian should not depend explicitlx amplies that we can restrict
ourselves to-independent elements of this group. Indeed, it can be staat, whena, does
not depend explicitly orx, the whole cocyclea=ag+a; +--- +a, satisfyingsa+db=0 is x inde-
pendent (modulo trivial redefinitions By Theorem 7.4, HkD"”"(6| d) contains nontrivial
x-independent elements onlykf p+1-s(gq+1) for some non-negative integerThe form of the
nontrivial elements is theal =C,°P~1*(K**1)s, In order to bgpossibly nontrivial, a, must thus
be a polynomial linear irC*kD‘p‘“k, of orders in the curvatureK4*! and of appropriate orders in

the ghostAP 4% andD® .
Ha] Hlp+1]

As a, has ghost number zero, the antighost numbeg,ghould match its pure ghost number.
Consequently, as the ghosﬁé:[_?’q) and Dz[p u have pureghp andq, respectively, the equation
q +

k=np+mgshould be satisfied for some positive intege@dm. If there is no couple of integers
n, mto matchk, then noa, satisfying the relevant equations of the des¢@bj can be constructed
and a, thus vanishes.

In the sequel, we will consider the case wherndm satisfyingk=np+mgqcan be found and
classify the different cases according to the following values ahdm: (i) n=2, (ii) n=1, (iii)
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n=0, m>1, and(iv) n=0, m=1. We will show that the corresponding candidatgsare either
obstructed in the lift taay or that they are trivial, except in the cage). In this casega, can be
lifted but a; depends explicitly orx and contains more than two derivatives.

(i) Candidates wittn=2: The constraintk< p+1 andk=np+mgqghave no solutiongThere is
a solution in the case previously considered in Ref. 17, whemrg=1, n=2. As shown in Ref. 17,
this solution gives rise to Einstein’s theory of gravity.

(i) Candidates witm=1: The conditionk=mqg+p=<p+1 are only satisfied fog=1=m. As
shown in Ref. 18, the lift of these candidates is obstructed after one step without any additional
assumption.

(i) Candidates witm=0, m>1: For a nontrivial candidate to exist kEmqg, Theorem 7.4
tells us thatp andq should satisfy the relatiop+1=mqg+s(q+1) for some positive or null integer
s. The candidate then has the form

D _ *D-p-1+mq
amq_ mapg) w(”s[qr]n)(K’D)’
where what is meant by a polynomials , is explained in Sec. V B.
We will show that these candidates are either trivial or that there is an obstruction to lift them
up toay afterq steps.
It is straightforward to check that, forlj<q, the terms

D — ~*D-p-1+ma-j , s(g+1)+j,ma-j
amq_J_C , w q ],mag-]

satisfy the descent equations, sincepas 1, all antifieldsC;>- o *Md] are invariant. The set of

summed indicesyg is implicit as well as the homogenelty degree of the generating polynomials
wsm- We can thus Iiftar'?1q up toag, ;- As m>1, this is not yeta,,.
There is however na( -1)g-1 Such that

Hafr-1)q-1) * 88Gn-1)q*+ B 1q-1=0- (26)

Indeed, we have

D *D— (s+1)( +1) (s+1)(g+1 1)g-1 D- (st1)(g+1) e+l aL sarn
8ag 1q=~ NCim I+l s+ DA, (Mm=1a-1) 4 (- mocm_ qlq Kd D .

Without loss of generality, we can suppose that

a(Dm_1 - ng_(stl q+1)a('os+1 (g+1) +5(Dm—1)q—1-
where there is an implicit summation over all possible coefﬁc@ﬁfé)(q”) and most importantly
the twoa’s do notdepend orC m-1g-1- (This is not true in the case—excluded in this paper—
wherep=g=1 andm=2: smceC m_l)q_lzcg has antighost number zero, the antighost number
counting does not forbid that tfeés depend orC,. Candidates arising in this way are treated in
Ref. 28 and give rise to a consistent deformatio*n of the Fierz—Pauli theddy=) Taking the
Euler-Lagrange derivative ¢26) with respect toC,,_;),_; yields

stD(a+D) _  (stD)(g+D),(m=1)g-1y o KA+l
EY ) { s

o ] s(q+1),(m-1)q

The product of nontrivial elements 6f(y) in the rhs is noty-exact and constitutes an obstruction
to the lift of the candidate, unless it vanishes. The latter happens only when the polyagpjal
can be expressed as
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dald (K,D)
V[q] (K D) - Kq+1ﬂ[p+1]&
O(sm)' IDMp+1]
for some polynomiaﬂ)z’éﬂll me1(K, D) Of orders—1 in Ka*! andm+1 in D. However, in this case,
a,'?nq can be removed by the trivial redefinition

aP —al+g( HV[ | ol erl)|D).

This completes the proof that these candidates are either trivial or that their lift is obstructed.
As a consequence, they do not lead to consistent interactions and can be rejected. Let us stress that
no extra assumptions are needed to get this result. In the particulageéséhis had already been
guessed but not proved in Ref. 18.

(iv) Candidates witm=0, m=1: These candidates exist only when the conditpa?=(s
+1)(g+1) is satisfied, for some strictly positive integerlt is useful for the analysis to write the
indices explicitly,

S
ar?_g V[QJH"[M‘ |“[p+1]C*D ]p 1+q(1—[ - )D0s+1 ,

i1 “[pﬂ] Hp+1]

whereg is a constant tensor.
We can split the analysis into two cas€3:g— (-)% under the exchange[spﬂ]H ,uf;}l], and
(i) g— (-)9*1g under the same transformation.

In the casHi), ac? can be removed by adding the trivial tesmP wheremP= ElzqqmJ and

s-1

D Dq_ 17 R PP *D p1+J a+1 20+1j
=(-) g alkipral " IHprC, EK’“[ " [D/‘L[p+1] ’u‘[p+1]]

This construction does not work in the ca@e where the symmetry of makesmP vanish.
In the case(ii), the candidate can be lifted up taag,

S
1 s+l
ag o f ‘T[p+l]HM[p+1]““l’u[p"l]xrl dx™ - -+ dx™-p-a-1 K?:l H Kqurl DY o1,
TD-p-a-1] i\ i Hpr) Hipr)

where the constant tensbéiis defined by

R 1 s+l
£ Tortllegpen)l |y — g viqliipe gyl lepin) €Tor 1] .
D-p-q-1] o] "[D-p-q-1]
Let us first note that this deformation does not affect the gauge algebra, since it is linear in the
ghosts.

The Lagrangian deformatioal depends explicitly orx, which is not a contradiction with
translation invariance of the physical theory if thdependence of the Lagrangian can be removed
by adding a total derivative and/or @&exact term. If it were the casaf,’ would have the form
ag =xG(- --) +x“d(- ). We have no complete proof thaf does not have this form, but we think
it very unlikely. In any case, this deformation is ruled out by the requirement that the deformation
of the Lagrangian contains at most two derivatives.

To summarize the results obtained in this section, we have proved that, under the hypothesis
of translation invariance of the first-order vertag, all af (k>1) can be removed by trivial
redefinitions ofa, except wherp+2=(s+1)(q+1) for some positive integes. In that case, the
supplementary assumption that the deformed Lagrangian contains no more than two derivatives is
needed to reach the same conclusion, and the only possible deforraiibaut the latter as-
sumption does not modify the gauge algebra.
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B. Computation of a;

The terma; vanishes without any further assumption wtegr 1. Indeed, wherg>1, the
vanishing of the cohomology of in puregh 1 implies that there is no nontriviaj.

This is not true wherg=1, as there are some nontrivial cocycles with pure ghost number
equal to one. However, it can be shdfthat any nontriviala'f leads to a deformation of the
Lagrangian with at least four derivatives.

C. Computation of a,

This leaves us with the problem of solving the equatj@§ +db}~*=0 for a5. Such solutions
correspond to deformations of the Lagrangian that are invariant up to a total derivative. Proceed-
ing as in Ref. 20 and asking for Lorentz invariance and aﬁad;hould not contain more than two
derivatives leaves only(when p=q, there exists also a cosmological-like te?r?‘n,ao
:Anﬂlyl---nﬂpvpgﬁ”l"'“p"’l"‘vp) the Lagrangian itself. This deformation is of course trivial.

IX. CONCLUSIONS

Assembling the results of the present pafe# q) with those previously obtained in Ref. 20
(p=q# 1), we can state general conclusions [fprq]-tensor gauge fields whepeandq are now
arbitrary but not both equal to one. Under the hypothesis of locality and translation invariance,
there is no smooth deformation of the free theory that modifies the gauge algebra, which remains
Abelian. This result strengthens the conclusions of Ref. 18 as no condition on the number of
derivative is needed any longer. Furthermore,dor1, when there is no positive integsersuch
thatp+2=(s+1)(g+1), there exists also no smooth deformation that alters the gauge transforma-
tions. Finally, if one excludes deformations that involve more than two derivatives in the Lagrang-
ian and are not Lorentz invariant, then the only smooth deformation of the free theory is a
cosmological-like term fop=q.2°

These no-go results complete the search for self-interactiofs, qf-tensor gauge fields. It is
still an open question whether interactions are possible betweelifferent [p,q]-type fields
(where “different” mean$p,,q,] # [p»,qy] for N=2), or with other types of fields.

As a conclusion, one can reformulate the results in more physical terms by saying that no
analogue of Yang—Mills nor Einstein theories seems to exist for more exotic fetldsast not in
the range of local perturbative theonies
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APPENDIX A: GOING TO THE LIGHT CONE

Theorem A.1: Let K be a tensor in the irreducible representatipp+1,q+1] of O(D
-1,1). The space of such harmonic multiformsik., solutions of
=0=K g igeallvy v o) (closed
=0=¢"1K

a[l‘o K[Ml' ' '#p+1]‘ Vel

0 O0OK=0
MK

By Mgl vy Vg 1y Bl Vr Ve (coclosed

is a unitary irreducible module of M-2) associated to the Young diagrdp, q].
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Proof: Since OK(x)=0 then, after Fourier transforni(p) # 0 iff p?=0. In the light-cone
frame, the lightlike momenturp* decomposes into

pt=p*p,0,---,0), p~=0.

——

D-2

(i) The condition thaK is closed implies

MV VD—p-2M1 " Hptl =
P& p PK, 0,

1" -,u.p+1|a1' g1

MVL T VD_go2f Mgl =
pﬂs Kal' : ‘ap+1‘/’“1' THgr1 O’

g U o _
g V1 VD-p-2H1 T A K _0,

M '/‘p+1‘0‘1' g+l

TV VD-g-2M1 " Mg+ =
& ! & K“l‘“ap+1\#1“'ﬂq+1
The italic indices will run over theD-2 transverse values. Assigning=+, v,
=j2,..0 Vpr—2=]p-¢—2 (Wheref=p or g, respectively, one finds
=0=K

Kil"'ip+1\al'”aq+1 “1"'“p+1|i1“'iq+1'

In other words,K vanishes whenever one of its columns contains only transverse
indices.

(i)  The fact thatk is coclosed on-shell implies
=0=K

p[_ K Fuy '/'Lp+1]|a1' g1 ap 'ap+1‘[+/,¢2- Mg+l p ik

K =0=K

ity prale @ ay oy Rt

In other wordsK vanishes whenever one of its columns contains a “+” index.

Once it has been observed that each columii afust contain at least one-" index and no
+” index, one finds that the tensor

_(p+D(@+1
obeys
_p*2 _
0= o2 KLy b = By igliy 1igp
) (p+D(g+1) . .
0= 77”“1 lK/’“llU“Z'“/"pﬁ-llVl"'Vqﬂ 00= —251]1K_i1i2'“ip“1'“jq_ = 5'1]1¢i1i2'“ip“1'”jq .

APPENDIX B: PROOF OF THEOREM 6.5

In this appendix, we give the proof of Theorem 6.5.
Let r be a strictly positive integer. A complete set of representativesKD()5|ld) [k>1 and
k=D-r(D-p-1)=q] is given by the terms of form-degree D in all homogeneous polynomials
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P(H) of degree r in H[or equivalently B)(H) of degree r inH].
It is obvious from the definition of{ and from Eq.(10) that the term of form- degre@ in
PO(H) has the right antighost number and is a cocycleH{(5|d). Furthermore, as{=H

+d(--), P(”(H) belongs to the same cohomology cIassPé{%(H) and can as well be chosen as a
representative of this class. To prove the theorem, it is then enough, by Theorem 6.4, to prove that

the cocycleP r)(ﬁ)|k is nontrivial. The proof is by induction: we know the theorem to be true for
r=1 by Theorem 6.3, supposing that the theorem is true #ct [i.e., [P'~ l(H)]k+D p-1 IS Not
trivial in HY,5_,4(5|d)] we prove thaf P*(H)I is not trivial either.

Let us assume thdP"(H)]? is trivial: [P r)(H)]E &(Uy, dPx) +dvP ™. We take the Euler—
Lagrange derivative of this equation with respecO;p#[ peang . Fork>q, it reads

VN _
@ by = ) O g ) ™ 20 gl i 4l (B1)
where
(r) D
N o, _ SMPOH)R
Hiq)Ypr14q "Ck * pglprik
S Ui .
: = = +
s Hq)|"[p+1-) 5C B Yp+1-i] forj=kk+1.
i
For k=q, there is an additional term,
=(-)d - -
@ wqilvpra-g) (=)3Z, “[q]“’[pﬂ—q]) (Zo M p-gpVpr1-q] Zop “[qj‘”[p-q]"’pﬂ-q])' (B2)

The origin of the additional term lies in the fact that“@"e19 does not possess all the irre-
ducible components dig]® [p+1-q]: the completely antisymmetric componédpt+ 1] is miss-
ing. Taking the Euler—Lagrange derivative with respect to this field thus involves projecting out
this component.

We will first solve the equatioB1) for k> q, then come back t@B2) for k=q.

Explicit computation ofaﬂ[qﬂ,,[pﬂ_k] for k> q yields

~ 1
:[HpmﬂQ%% ] [H[d]og é [D-p-1T Um mﬂ]

a
Piq)lYpr1k [D-p-1] M[Cﬂ“’[q]l ‘p[q] Yp+1K]

wherea is a constant tensor and the notat[aﬁjk,,,[p] means the coefficiem\kly[p], with antighost
numberk, of the p-form component oA:EkJAk,,,m dx”s -+ dx”. Considering the indicesg,.;
as form indices(B1) reads

p+1-k _ ryptD-p-1. .. rypliqD-p-1
o He{a HPlal a 1L
el L T ot L I O P e

r-1) ) p+1-k
~
= Helq) a, 1 -1 = (=)KS(ZPEH) 4+ (= )Pk gzBk
E . el g () oZig) *+ () Oug)”

The latter equation is equivalent to

(r-1) i D

~ 1

P 1 = cee) 4+
il:{ e a“[q]“’[lq]‘ml”{q]l 8 -)+dC-),

D-p-1+k

which contradicts the induction hypothesis. The assumptior[Eﬁ%i(lh-])],'(3 is trivial is thus wrong,
which proves the theorem fde> q.
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The philosophy of the resolution ¢B2) for k=q is inspired by the proof of Theorem 3.3 in
Ref. 20 and goes as follows: first, one must constrain the last terB2)fin order to get an
equation similar to the equatigB1l) treated previously, then one solves this equation in the same
way as fork>q.

Let us constrain the last term @82). Equation(B2) and explicit computation o

imply

HiqlYpr1-

=(-)a —
§[Vp+1-q @ Hq)| Y p-gi N (=) 6({?[Vp+l-q 4 '“[q]IV[p-q]])‘) bﬁ[”pﬂ-q Zo Hiq)Yp-g) N

~ 1 ~ -1 0_1 .no_l’—l ]
~ p .. [HA - [D-p-1] " "?[D-p-1] -
bo\([H [q]]o*"ﬁlo—p—u [Ha ]O*U[Dfp—n%vmﬂp—u " a[“[qﬂ‘P[lqﬂ”"P[q]l)’
whereb=q/(p+1)(p+1-q). By the isomorphismH(d| 8)/R=HB(6|d)=0, the latter equation
implies

1 r-1
SHio-p-17 " "[D-p-1}]

~ 1 ~ =
Z ~ —|HPll], 2 -+ [HPLa) -1 a 1,1
L)l p-q) +pr1-q) | ]O'G[D—p—l] [ ]]O'U{D—p—l] /‘[q]‘P[q]| |”Eq] Yp+1-k]

(the constant solutions are removed by considering the equation in polynomial dedrée the
fields and antifields Inserting this expression fdfom{q]\v[p_q] V1] into (B2) and redefiningZ; in

a suitable way yield$B1) for k=q. The remaining proof is then the same asKorq. O

APPENDIX C: PROOF OF THEOREM 7.2

In this appendix, we give the completend lengthy proof of Theorem 7.2.
Let & be an invariant polynomiallf a? = by, ,+dc, then

aE =Pwsn (Kqﬂ'ﬂ)h? + 5ME+1 + deD_l,

where F(S,r)(Kq*lJN-l) is a polynomial of degree s in®! and r in H, such that the integers,s
=1 satisfy D=r(D-p-1)+k+s(q+1) and ug,, and »{~* are invariant polynomials

The proof is by induction and follows closely the steps of the proof of similar theorems in the
case of 1-formé>?’ p-forms?* gravity*’ or [p, p]-fields®

There is a general procedure to prove that Theorem 7.2 holds>@, that can be found,
e.g., in Ref. 17 and will not be repeated here. We assume that the theorem has been proved for any
k' >k, and show that it is still valid fok.

The proof of the induction step is rather lengthy and is decomposed into several steps.

0] The Euler-Lagrange derivatives af with respect to the fieldg and CI (1sj<p+1) are
computed in terms of the Euler—Lagrange derivativeb,of (Appendix C ).

(i)  Itis shown that the Euler—Lagrange derivativesgf; can be replaced by invariant quan-
tities in the expression for the Euler-Lagrange derivative,ofvith the lowest antighost
number, up to some additional terrgsppendix C 2.

(ii)  The preceding step is extended to all the Euler—Lagrange derivatiaggAppendix C 3.

(iv) The Euler—Lagrange derivative af with respect to the field is re-expressed in terms of
invariant quantitiegAppendix C 4.

(v)  Ahomotopy formula is used to reconstragtfrom its Euler—Lagrange derivativé8ppen-
dix C 5).

1. Euler-Lagrange derivatives of  a,
We define

8Dyt

Zon = —————— 1<j<p+1,
k1w vpea-i) 5C Hqllvprai) I=p
j
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8Dy

o)l vq) —
Yk+[f] Mal = ” .
Kipll Vg

Then, the Euler—Lagrange derivativesapfare given by

say
g = ()7 €
" Puq)’
ac :
Say .
— = (=) X _ ) <
SC Hallp+1-] (=)' 0215 wygoypu gy ~ L qUppepprprayl AT <P,
J
Say _
9% ()i , o i
5] o)~ ) 0%k gy T D gl v llom orcp 1<1=0,
say
= ”[q]\ﬂ[p]
Scp #l "l Nt gy * PP wropior e (C2)
where
|
= (- )ampgz)_PFDL
al(p-g+1)!
and
V[Q]l Ma] = ;é{ﬂ[q]aﬂ[pl]
Pl (p+1)!q! [v1q18Prp)) g0

is the second-order self-adjoint differential operator defined G;)f]‘,,[q]
X CPInlotq

As in Appendix B, the prolectlon on the symmetry of the mdlceSOPfls needed wherj
=<(q, since in that case the varlabI€§ do not possess all the irreducible componentg odf
®[p+1-j], but only those where the length of the first column is smaller or equpl When
j>q, the projection is trivial.

D il It o

2. Replacing Z by an invariant in the Euler—-Lagrange derivative of a, with the lowest
antighost number

We should first note that, whda< p+1, some of the Euler—Lagrange derivativespfanish
identically: indeed, as there is no negative antighost-number figldannot depend oﬁ?j if ]
>k. Some terms on the right-hand side (&1) and (C2) also vanishZ,,,_; vanishes wher
>Kk+1. This implies that thep+1-k top equations ofC1) and(C2) are trivially satisfied, the
-k first equations involve only vanishing terms, and ¢pe k+ 1)th involves in addition theS of
an antighost-zero term, which also vanishes trivially. The first nontrivial equation is then

Say

T K (kK — .

* ( ) 5(2 1/"'[q]‘V[p+1—k]) ZOﬂ[q]l[V[p_k],Vp+l_k]|Sym of Cy -
Kaagql Yrpr1-4

(C3

Let us now defing T9 We will prove the following lemma for

= (-)a
et = ) or Doy ppualiggy
k=q.

Lemma C.1: In the first nontrivial equation of the system (C1) to (C2) [i.e., (C1) when k
=p+1and (C3) when p+>k=q], respectivelyZ,_, or Z, satisfies
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—_ >/ k-l *
Z'/*[qﬂ”[pﬂ—k]_Z'M[q]\V[pﬂ-k]Jr( ) oB I+ Lo ig B 'f‘[q]'“[pﬂ—k—lyVp+|—k]|3ym of G g

o'?LR(S’r)(Kq+1, /7_'[)

~ 1 “q]

+A|PY (H)+ =T -
| Phal ) s el oKE 1]
p+l

: (C9

*

e | sym of €,

where Z is invariant, theg,’ s are at least linear in\" and possess the same symmetry of indices
as Z_;, A= (-)PP+1HI0+D72] p0) s 3 polynomial of degree n i and RS is a polynomial of
degree s in K1 and r in H. The polynomials are present only wherlp=n(D-p-1) or p+1
-k=s(q+1)+r(D-p-1), respectively

Moreover, when p1>k= q, the first nontrivial equation can be written

% = (_ )kﬁz, _ Z, | .
Ll Y pr1+) Optp [ M p-k] Vp+111SYm 0f Cy
kl‘[q]|”[p+1—k]

(m) (peq+l _krp(sn g+l 1 N
¥ ([QM[qJ(K )]”[p+1—k]+( )[R“[q](K ’H)]Ov”[pﬂ—kj)'SY”’ of G’

where Z, is an invariant an is a polynomial of degree m in®", present only when
h t and [>](Kq+1) | | of d il t only wh
q

p+1-k=m(g+1).
The lemma will be proved in this Appendix Se€ 2 a—C 2 c, respectively, for the cades
=p+1,q<k<p+1, andk=q.

a. Proof of Lemma C.1 fork =p+1

As k—p>0, there is no trivially satisfied equation and we start with the top equatié@Hf
to (C2).

The Lemma C.1 is a direct consequence of the well-known Lemm4d<see e.g., Ref. )7

Lemma C.2: Letr be an invariant local form that i$-exact, i.e. a=8B. ThenB=p’+do,
whereg’ is invariant and we can assume without loss of generality thist at least linear in the
variables of\.

b. Proof of Lemma C.1 for q <k<p+1
The first nontrivial equation isask>q)

Sa,
— (K -
* ( ) 5(2 l/,L[q]‘ V[p+1—k]) Z O[L[q]‘[V[p_k],Vp_',l_k] :
kisgq)l Y[pr1-4q

(CH)

We will first prove thatZ, has the required form, then we will prove the first nontrivial equation
can indeed be re-expressed as stated in Lemma C.1.
First part: Defining

- say
YOl prg — 5" '
q:u[q]‘ V[p+ 1-q]
the above equation can be written as
a8+1—k — (_ )k5(2r1)+1—k) + (_ )p+1—k dzg—k, (C6)

where we consider the indiceg;.; as form indices and omit to write the indicag;). Acting
with d on this equation yields ™ *=(-)**15(dzP**™). Due to Lemma C.2, this implies that
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a§+2—k: dZ§+l—k+ 5Zg+2_k, (C?)

for some invariania?*2* and somezb*?*. These steps can be reproduced to build a descent of
equations ending with

D _ 47D-1 D
ap—p-14k = AZpp-14 t 62 piis

WhereaB_p_l+k is invariant. AsD-p-1+k>k, the induction hypothesis can be used and implies

ag—p—l+k = dZI’DIZE)EMk + 5ZI£)|2p+k + [R(Kqﬂ’H)]B—p—Hkv
wherezy2,, andZi2h , are invariant, an®(K%1, ) is a polynomial of ordes in K% andr
in H (with r,s>0), present whemp+1-k=s(g+1)+r(D-p-1). This equation can be lifted and
implies that

ar1)+2—k: dZip+1_k+ 5Zép+2_k+ [R(Kq+1,7f()]g+2—k'

for some invariant quantitiezip"l'k and Zép‘“z'k. Substracting the last equation frai@7) yields
~ +1-k—q
1| *REK*LF) [P
d<zp+1—k_zrp+l—k__Tq|:— + 5():0

As HY*7(d| §) =Hp_,y(8]d), by Theorem 6.5 the solution of this equation is

-k rp+l-k
ZP+lk—7/p + =74
1 1 (-)]Kq+l

1 l FR(KT )
S

p+1-k-q
] +dBE K+ 8B+ [P (H) R,
1

where the last term is present only wheak=n(D-p-1).
This proves the first part of the induction basis, regarding

Second part:We insert the above result faZ; into (C6). Knowing that &([P(H)]2**™)
+d([P(H)]§™=0 and defining

FR(KSL 7y |
JgKart '

\Ng—k: (- )k+1<(_ )ng—k+ 5B€_k+ [P(n)(,"‘_'l)]g—k_i_ é-rq|:
we get

a1 = (= )RS(ZiP) + dWE™) + (- MRKTL H) 5™,

Thus dW§™) is an invariant and the invariant Poincaré Lemma 5.1 then states that

d(WE™) = d(Z{P™) + Q(KT*)

for some invariantZ(’,"‘k and some polynomial iK%, Q(K9*Y). This straightforwardly implies
af™ = (- SZEPH) +dZg) + QKT + (- RKT LTI,

which completes the proof of Lemma C.1 fgrxk<p+1. O

c. Proof of Lemma C.1 fork =q
The first nontrivial equation is
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51_9
: =(=)%z Luq)l7pe 11

Al Vpr1-]

) = (Zoug o) ™ 200 kigliip-gppracad (C§)

This equation is different from the equations treated in the previous cases because the operator
acting onZ, cannot be seen as a total derivative, since it involves the projection on a specific
Young diagram. The latter problem was already faced irf fhe] case and the philosophy of the
resolution goes as follow®:

(1) one first constrains the last term @E8) to get an equation similar to EqC3) treated
previously,
(2) one solves it in the same way as fprKk<<p+1.

We need the useful Lemma C.3, proved in Ref. 20.

Lemma C.3: Ifag is an invariant polynomial of antighost number 0 and form degree 1 that
satisfiesag= 6Z;+dWp, then, for some invariant polynomials Zand W,°, Z;=2}1+ 643+ dxj and
Wo=Wp'+ 8¢y

As explained above, we now constrain the last terngG8). Equation(C8) implies

) —bg

I o 2 0ugq p-l Pprao

= (_ )qb‘(a[p Z l,u,[q]‘

a
P X 0npql Yp-gl7pe1g p-ql¥pr1q

whereb=q/(p+1)(p+1-q). Defining

@ Jr dx’pri,

Lougip-ail ~ “lp ¥ Oupqyl vp-ql¥pe1g

Z =(=)%, 2 X p+1q
Wprig)p-a)) =) lp & Luq ”[p-q]]”p+1—qd ’

Wg[ﬂﬂ[qﬂp—qﬂ =~ ad Zoug) g

and omitting to write the indicefouq¥p-q], the above equation rea&%zéi% d\7\/8. Lemma

C.3 then implies thatWd=1/°+sm? for some invariant°. By the definition of\g, this statement
is equivalent to

o Z =1/ +om .
Lo & Ougq)l vip-qi) ™ " Olesgqp-qe] U1 p-q1P]

Inserting this result intgC8) yields

o -1/ =5((-)9z2 +m -Z .
outglprar ™ ' olgrpr-ap = N auggpun g Miligpunl) ™ Z0uigllip-qrrpea]

This equation has the same form(&5) and can be solved in the same way to get the following
result:

z =(-)%m +Z + +3
Luq)lps 1) =) Unqprigll = Tqlprag) By gly-qrrpaal ¥ OP 2uglvper g
aLRM[q](Kq+l!H) ~
+=lTM — +
S TP[p+1] KL [P(H)]lvV[pﬂ—k]’
P[p+1]

L¥pe1q)

- +(=)d ’ +7' + g+l
@ Optgqlrpr1-41 lo gl Yp+1-g)] =) 5(21"[Q]|V[p+lﬂ]) Zoﬂ[q]\[”[p—q]v"p+m] [Q"[q](K )]V[mnﬂ
k 19
+ (=) [R(KY ,H)]o,y[p+1 -

Removing the completely antisymmetric parts of these equations yields the desired redult.
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This ends the proof of Lemma C.1 f&eq.

3. Replacing all Z and Y by invariants

We will now prove the following lemma.
Lemma C.4: The Euler—Lagrange derivatives pftan be written

say
* :(_)p+15(zl,(—p/_,, )u
éCpi‘[lq] fa]
otay ,
— ()i ’ ) _7 i<
( ) 5(2 k+l_]:“-[q]|”[p+1—j]) Zk_JM[q]‘[V[p—j]va+1—j]' q <J p'

SC. HalMp+1-i)
J

say

= (- Y 8(Zrs -7\ L lsjs=
SC. Halp+a-i) =)' k+1‘lﬂ[q]\V[p+1—n) k‘JM[q]\[V[p—anp+1—i]|5Vm of Cp» I=a
J

say
——=4(Y, + 8D 7' TalPrp)
S¢p HalTal N i e

where Z (k-p=<I=<Kk) and Y,,, are invariant polynomials, except in the following cases. When
k=p+1-m(g+1) for some strictly positive integer ,nthere is an additional term in the first
nontrivial equation

say

T TR _(_\k ! _ ! q+1

= + "

SC. Hrallp+1-4 =) ﬂlﬂ[q}‘”{pﬂ—k} Z ol piq Ppe1 [Qﬂ[q](K )]”[p+1—k]|5ym of G
k

where Q is a polynomial of degree m " Furthermore, when &kp+1-r(D—-p-1)-s(q+1)
for a couple of integer s> 0, then there is an additional term in each Euler—Lagrange deriva-
tive,

say

—— = (=) 8Z, - Z\ -
SC. Mallp+1-i] (=)' k+1‘lf'~[qﬂ”[p+1—n) k‘lﬂ[q]l[Wp—n'Vpﬂ—J]|5Vm of G
]

_\ktptlp g+l 4 , .
+ ( ) Ak_] [Rl’“[q](K 1H)]k—] v[p+1_j]|sym of Cj ’

5Lak ’ iy
_C%  _ 1 OTq1lPrp] ITqIrplé] a1 Ty 1Plp+1]
Scp Hiailal Y "+1ﬂ[q]|”[q]) * BD gllogmlorg? " Aé%V[q]ﬁp[pﬂﬂ&“aﬁ(xf[R‘T[q](K FOLE),
where

p+q+2
(D-p-g-D(p+D!q

Proof: By Lemma C.1, we know that th&'s involved in the first nontrivial equation satisfy
(C4% and that this equation has the required form. We will proceed by induction and prove that
whenz,_; (wherek—j = 1) satisfiegC4), then the equation fo&*ak/b’C} also has the desired form
andZz,_j,, also satisfiegC4).

Let us assume tha,; satisfies(C4) and consider the following equation:

A=p A= P,
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say

_ i (M) Vp+1i wiqlVp-i1vpr1-i) .
* = (_ )J5(Zkﬂ]_j[p+l J]) - Zk_[?] Tp-ilpr-] |sym of CJ. . (C9)
IV pea)

Inserting(C4) for Z,_; into this equation yields

say

_ i (M) Y p+1-i il Vp-i] Vp-j+1] .
* = (_ )J5(Zk£(}_]_j[p+l 11— Bk_[?lly[p ey |sym of Cj)
g pe1-)

7 | er1-il
~ 1 I RAAI(KIL H)
—\K*pgy, . A Zq9 0 " V7
+ [al +
(=)“"Pay_; 6| PHa(H) STP[p+1] K
Plp+1] k-j+1 sym of CJT

+ (= ZHalepeas) 4 (< PHTA TR )T gy o (C10)

Note that one can omit to project on the symmetrieétj*qg when inserting C4) into (C9). Indeed
the Young components that are removed by this projection would be removed later anyway by the
projection on the symmetries @‘;

Defining the invariant

g Mpr1-) = 7 Mgl Mpei) _\ktpHa
Ziwty = LGP M=o+ (=) PHA

_ 1 aLRM[q](Kq+1 7‘:[) YIp+1-j]
A ity ¢ I L
X | PMal(H) + STP[pﬂ] KO

P i *
[p+1] k=itl | sym of ¢ 1 veo

and setting\VV=0 in the last equation yields, #_;.; is at least linear inV,

_ dac

*

— i " W] V[p+1-j 1 11l p=i7 Vpr1] .
= (- yo(z ) - z Al el c

I pra-4)
+ (=) A IRAAKIL H)RE Ty o (C11)
This proves the part of the induction regarding the equations for the Euler—Lagrange derivatives.

We now prove thak,.j,, verifies(C4).
Substracting C11) from (C10), we get

— (i wallpri-] — 7! #al il —  arallMp=i] Ypr1-j) «
0=(-)l¢s ZkJqu]_’j’[w il Zk+£q_]j [p+1-] ﬂkﬂ]_j”[p i1Vp+ 1|Sym of C]

7 Yp+1]
. ~ 1 JRMa(KI*L H)
—itktpa | pay T - - 7
+ (PG| PR + TR o
Plp+1] k+1-j | sym ofc]f

As k+1-j>0, this implies

Ml Mpri-i] = 7" Ml Tpr1-i1 o (— V=1 s pMall e+ Al Vp-i1Vpr1-i] .
Z gl =z e el + (<) g Ll + gt e ey of C;

_ 1 aLRM[q](Kq+1'7”_'() Vp+1+]
. M — -
+Ak+1—] P [q](’}—[) + STg[pﬂ] 3Kq+l
Plp+1] k+1-j | sym of C}

which is the expressio(C4) for Z,, ;.
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Assuming tha?,; satisfiegC4), we have thus proved that the equation doa, / 8Cj* has the
desired form and thaf,,; also satisfiegC4). Iterating this step, one shows that Zlé satisfy
(C4) and that the equations involving ons have the desired form.

It remains to be proved that the Euler—Lagrange derivative with respect to the field takes the
right form. Inserting the expressidqc4) for Z, into (C2) and some algebra yield

say

0% D Z' ctalete)
Sepalal =& "+1ﬂ[q]|”[q]|5ym ot ) + BB ugingligyorg

N A(;[‘f[qlal*[p]ﬂ o (X Ry, (Kq+1,H)]£[p+1])|sym of ¢

[v1q1Bprp+11]
where
Y = + Tq]l P[]
Yicttpglng = Yirtigglngy ¥ PP uigbglopplorgPret
= | LeroBl
&LR"[QJ Kq+l,H p.
+cdacknly [ p () + TRIAKT H)
(8ol " “la) s }‘[p+1] gKarl
Mp+1] K+l

+(- )k+q+1A5[0[q]a/L[p]§] 9 (Xg[R

g+l Lorp+118]
Lnqvppe)7eXe R (K FORE)

_ k+1 .. ’ S .
and c=B[1/(p+ DG JA()"" % Defining Yy, 1 = Yietuglnglsym or gly=o and setting\’
=0 in the above equation completes the proof of Lemma C.4. O

4. Euler—Lagrange derivative with respect to the field

In this section, we manipulate the Euler—Lagrange derivati\ag @fith respect to the fieldb.
We have proved in the preceding section that it can be written in the form

say

— = 7/ °tallProl
Sprtelal Wice1uyirg) * PPugglmgorae

orgleH 1l +1 Iz
+A5{V[[3]]BP[EE1]]& & (XS[RU (K9 *H)]k[pﬂmsym of ¢-

As g is invariant, it can depend orsz[ Il only through Kﬂ[ ol which implies that
Say/ Sprela= aaﬁx[#[ e[l whereX has the symmetry of the curvature. This in turn implies
that 5(Yk+l#[ 16 ]) 5WM[p]a‘V[ 8 for some W with the Young symmetnfp+1,q+1]. Let us

consider the indiceg,) as form indices. A$1 (3] d)_Hp+l+k 8|d)=0 for k>0, the last equa-
tion implies

+ M, (C12)

Y, = SA .
ke Lugglvq) S SELVRIE!

By the induction hypothesis fgqo+1+k, we can takeA,,, and Ty, invariant. Antisymmetrizing
(C12 over the indicesuy - - upvy - vq yields
0= 5Ak+2,u1' “pgalig mplvyrvg] + &}\Tk’fl)\,ul' “pgalig pplvy- - gl

The solution of this equation foF,,, is

- 1ed
Tk+1uo"'uq_1[uq'“Mplvl"'vq] - 8Qk+2ﬂo"'uq_1|[ﬂq'"upvl'“vq] +d SK+1aMo'"Mq_ll[uq"'ﬂpvl"'vq]

PID
+ [U[Hq Mpl1 Vq](H)]kﬂ N €ug- ‘Mg-1P[D~-q]’

where UV is a polynomial of degree in H, present wherk+q+1=D-u(D-p-1) for some
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strictly positive integeu. As T and U(”)(7-[) are invariant, we can use the induction hypothesis for
k’=k+1+q. This implies

— ! ac!
- 5Q +
Tk+1l”‘0'"/’“q—l[r“'q"'“p"’l"'vq] k+2M()'":U'qfll[:uq"'/’“le"'Vq] d Sd‘lal’«o'"ﬂq—l‘[l"q"'/’“p”l""’q]

+[UY (H)+ VW (K3 H) e

[g vy vl [M Hpry Vgl 1o Hg-1P[D-q]’

(C13

whereQ,, andS,,, are invariants an&/*" is a polynomial of ordev andw in K% and,
respectively, present whebd-qg=v(q+1)+w(D-p-1)+k+1 for some strictly positive integers
v,W.

We define the invariant tensé, with Young symmetnyfp+1,g+1] by

Kip BYq)

g+l

E”"“[p]lﬁ”[q]:g 'Skﬂpo Pi-alvi - vg Bry - viealey Ppé{[aﬂ[p]

where a;=aql(q+1)!/ (q+1-D)!i!] and ao=(-)PY((p+1)H)*/ (p-a)!(q)*(pP-a+D)(p+2)=Ll(p
mACR
Writing a“BEkﬂaM[p]‘ﬁV[q] in terms ofS,,; and using(C13) and(C12) yields

q

’ — qaB o T\/©.W) a+1 7/\1P[D-q]
Ykﬂ#{pﬂ"[q] J Ek”““[p]‘“[qﬁ5Fk+2ﬂ[p]|V[q]+‘7 gﬁ'[\/[wﬁ]mﬂ"m](K HONET €fi¥isr * VgPD-q)’

(C14

where Fy,, is invariant, 8;= ag[(p+2)q!/ (p+1)il(q—i)!] and v is allowed to take the value
=0 to cover also the case of the polynomifl’ ().

5. Homotopy formula

We will now use the homotopy formula to reconstracfrom its Euler—Lagrange derivatives,

+1
o Se . da

1
A D
ak_J dt] bugyyy +ECW [ps1- dx.
0 [p]'"Tal 5¢M[p]\1’[q] -1 [al"[p+1 1]5C

] M)
Inserting the expressions for the Euler—Lagrange derivatives given by Lemma C.4 yields

k

1 p+l
A= f dt[ 5(¢“[p]|”[q]Yll<ﬂp]‘V[q]) + E (@ z Ml + 3 ¢
0 2

W[q]'”[pﬂ—u et 1] 1k Mpra-j)

X(= >k+p+1Ak_j[Rﬂw<Kq+1,ﬂ)];@;ﬂ-ﬂ + AT 5, P (IR (KL H) )

¢#[p]‘”[q1 [vqBerpr]”

*

" Ck“[q]\V[p+1—k][Q(m)M[q](Kqﬂ)]y[pﬂ_k] d®x+ dn ™

Using the resul{C14) for Y,,, and some algebra, one finds



012303-33  No self-interaction for two-column massless fields J. Math. Phys. 46, 012303 (2005)

1
D_ HUp+1]Mgr1] 4D g+1 (v,W) +1 7\1D-q-1
%= fo o 5(K"[p+1]‘”[q+1]Ek’£’i D dPx) + avK#[p+1][V (K H)

P+l
4 [V[p+1-] 4D 7 142,\1D
+ 2 5(clﬂ[q]‘v[p+l J]Zkﬂtﬂ_]J [p+1-i] (0x) + af[H”[q]Rg[q](Km AL

+ag[HaR ™IV (K | +

wherea, =(-)XVSA Bl (p=i)!/ p!], a,=(=)PPH+DHPErD+KII2) gnd g, =(-)ka,. In short,

= [P(KYH)IR + Suagyy + g

for some invarianka+l, and some polynomidP of strictly positive order inK%*! and H.

We must still prove thab?~* can be taken invariant.

Acting with y on the last equation yields(¢hy *)=0. By the Poincaré lemmaynZ*
=d(rE‘2). Furthermore, a well-known result d(y|d) for positive antighost numbé (see e.g.,
Appendix A.1 of Ref. 17 states that one can redefing™ in such a way thatn? '=0. As the
pure ghost number af.~* vanishes, the last equation implies thRt* is an invariant polynomial.

This completes the proof of Theorem 7.2 foeq. O
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We investigate the critical behavior of tiN:component Euclideah¢* model, in

the largeN limit, in three situations: confined between two parallel planes a dis-
tancelL apart from one another; confined to an infinitely long cylinder having a
square transversal section of at€a and to a cubic box of volumg?. Taking the

mass term in the forrm(z):a(T—To), we retrieve Ginzburg—Landau models which

are supposed to describe samples of a material undergoing a phase transition,
respectively, in the form of a film, a wire and of a grain, whose bulk transition
temperature(Ty) is known. We obtain equations for the critical temperature as
functions of L and of T, and determine the limiting sizes sustaining the
transition. ©2005 American Institute of PhysiceEDOI: 10.1063/1.1828589

I. INTRODUCTION

Models with fields confined in spatial dimensions play important roles both in field theory and
in quantum mechanics. Relevant examples are the Casimir effect and superconducting films,
where confinement is carried on by appropriate boundary conditions. For Euclidean field theories,
imaginary time and the spatial coordinates are treated exactly on the same footing, so that an
extended Matsubara formalism can be applied for dealing with the breaking of invariance along
any one of the spatial directions.

Relying on this fact, in the present work we discuss the critical behavior of the Euchdefan
model compactified in one, two, and three spatial dimensions. We implement the spontaneous
symmetry breaking by taking the bare mass coefficient in the Lagrangian parametriméj as
=a(T-Ty), with >0 and the parametdrvarying in an interval containing,. With this choice,
considering the system confined between two parallel planes a didteaz@t from one another,
in an infinitely long square cylinder with transversal section @&e4?, and in a cube of volume
V=L3, in dimensionD=3, we obtain Ginzburg—Landau models describing phase transitions in
samples of a material in the form of a film, a wire and a grain, respectiVglgtanding for the
bulk transition temperature. Such descriptions apply to physical circumstances where no gauge
fluctuations need to be considered.

We start recapitulating the general procedure developed in Ref. 1 to treat the nfagsive
theory in Euclidean space, compactified id-dimensional subspace, with<D. This permits to
extend to an arbitrary subspace some results in the literature for finite temperature field theory
and for the behavior of field theories in the presence of spatial bound&ige.shall consider the
vector N-componeni(A¢*)p Euclidean theory at leading order inN,/thus allowing for nonper-

dpermanent address: Instituto de Fisica, Universidade Federal da Bahia, 40210-340, Salvador, BA, Brazil.
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turbative results, the system being submitted to the constraint of compactification of a
d-dimensional subspace. After describing the general formalism, we readdress the renormalization
procedure we use treating the simpler situatiod=fL, which corresponds to the system confined
between parallel planga film), analyzed in Ref. 5 for the case of two componeNts2. We then

focus on two other particularly interesting casesdef2 andd=3, in the three-dimensional Eu-
clidean space, corresponding, respectively, to the system confined to an infinitely long cylinder
with square transversal sectioa wire) and to a finite cubic boxa grain. Extending the inves-
tigation to these new cases demands further developments in the subject of multidimensional
Epstein functions.

For these situations, in the framework of the Ginzburg—Landau model we derive equations for
the critical temperature as a function of the confining dimensions. For a film, we show that the
critical temperature decreases linearly with the inverse of the film thickness while, for a square
wire and for a cubic grain, we obtain that the critical temperatures decrease linearly with the
inverse of the side of the square and with the inverse of the edge of the cube, respectively, but with
larger coefficients. In all cases, we are able to calculate the minimal systenttlsideness,
transversal section area, or volunilow which the phase transition does not take place.

Il. THE COMPACTFIED MODEL

In this section we review the analytical methods of compactification ofNf@mponent
Euclidean\¢* model developed in Ref. 1 We consider the model described by the Hamiltonian
density,

1 1 \
H=20,0a0"@a+ §ﬁ¢a¢a+ N(‘Pa@a)za (1)

“2
in EuclideanD-dimensional space, confined taalimensional spatial rectangular box of sidgs
j=1,2,...d. In the above equation is the renormalizedcoupling constantﬁ% is a boundary-
modified mass parameter depending{b} i=1,2,... d, in such a way that

{ Llli}m mo(Ly, ... ,Le) =me(T) = (T =Ty, 2
oo
mS(T) being the constant mass parameter present in the usual free-space Ginzburg—Landau model.
In Eq.(2), Ty represents the bulk transition temperature. Summation over repeated “color” indices
ais assumed. To simplify the notation in the following we drop out the color indices, summation
over them being understood in field products. We will work in the approximation of neglecting
boundary corrections to the coupling constant. A precise definition of the boundary-modified mass
parameter will be given later for the situation D=3 with d=1, d=2, andd=3, corresponding,
respectively, to a film of thickneds,, to a wire of rectangular sectidmy, X L, and to a grain of
volumeLXLy,XLs.

We use Cartesian coordinates (x4, ... ,Xq4,2), Wherez is a (D —d)-dimensional vector, with
corresponding momentut=(k,, ... ,ky,q), g being a(D-d)-dimensional vector in momentum
space. Then the generating functional of correlation functions has the form

L
Z:fl)(pTD(p exp(—f ddrde"dzH(qa,V(p)), (3
0

whereL =(L,,...,Ly), and we are allowed to introduce a generalized Matsubara prescription,
performing the following multiple replacementsompactification of al-dimensional subspage
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d 1 2
il —2 k— T =124 4)
2m |n——oo Li

A simpler situation is the system confined simultaneously between two parallel planes a distance
L, apart from one another normal to tkeaxis and two other parallel planes, normal to th@xis
separated by a distantg (a “wire” of rectangular section

We start from the well-known expression for the one-loop contribution to the zero-
temperature effective potentlﬁal,

(-1 )S+l < d°k 1
Ui(eg) = E 12765 J 2mP (@+ mD)®" (5)

wherem is the physical mass ang is the normalized vacuum expectation value of the f{éhe
classical fielg. In the following, to deal with dimensionless quantities in the regularization pro-
cedures, we introduce parameters

m 1 A . P

=—, b_:—, =, =5, 6
C 271_,“ i LiM g 4772:“4 D ¢0 /~LD 2 ( )

where u is a mass scale. In terms of these parameters and performing the replacétyethis
one-loop contribution to the effective potential can be written in the form

1)5 dD dqr

S lodiy T f T TS vt
@

whereq’=q/2mu is dimensionless. Using a well-known dimensional regularization forfrtola
perform the integration over th@® —d) noncompactified momentum variables, we obtain

Ui(o, by, ... by = MD de

- 2 D-d
Ul(¢01bla e 1bd) = /‘LDbl T bdz f(DadIS)[lzgd)g]sAg (S_ T 1 blv e vbd) ’ (8)
=1
where
B (_ 1)s+1 ( D - d)
= (D02 -
f(D,d,s) 209 I'l's > (9
and

+0oo

2
AS(viby, ... ,bd)= 2 (b2n2+ -+ +b3n3+c?) "

LNg=—*

o+ 22 E (b2nZ +c?)™

|1nI

+22 2 E (b7n? + b’ +c) 7+ -
i<j=1 ni,njzl
+2¢ D (bin+ -+ +bIng+ )7 (10)

n1|. . .,nd=1
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Next we can proceed generalizing to several dimensions the mode-sum regularization pre-
scription described in Ref. 8. This generalization has been done in Ref. 1 and we briefly describe
here its principal steps. From the identity

1 1 *
—= dt tte™t, 11
A’ F(V)fo © v

and using the following representation for Bessel functions of the third knd,
2(alb)"2K (2\ab) = f dx x~tem@x=bx (12
0

we obtain after some rather long but straightforward manipulafions,

or=(di2)+1,_2v~(d/2)

A82(v; by, ... by = [2r(d/2)‘1r< v— g) (zwc)d—ZV

by -+~ byl'(v)
d = v—(d/2)
n 27rCny

+222(_') K, (_'>+

i=1 n=1 \ 27Chy @2 by

% 1 n2 n2 v—(d/2) n2 n2

+2d E (_1 _;++_(2]> Kv—(d/Z) 2aC _;.|.....|._':2j .

ny,...Ng=1 2mC b1 bd b1 bd

(13
Taking v=s—(D-d)/2 in Eqg.(13) and inserting it in Eq(8), we obtain the one-loop correction to

the effective potential irD dimensions with a compactifiedtdimensional subspace in the form
(recovering the dimensionful parameters

- D
Us(@oLy, ... Lg) = 2 [129431°h(D,9) {25‘(D’2)‘2F(s- §>mD‘25
=1
d = m \(©/2)-s
+> > (E) K(prz)-s(mLn;)
i=1 n=1 \LiM;

d )
(D/2)-s
m > 5 25
+2 E E (—/—> K(D,Z)_S(vaizniz + sznjz) + .-
V’

i<j=1 n=1 \ \Ln? + Lon?
1~ m (DI2)-s I —
+2 > 22, ... 1122 Kprz-s(myLing + - -+ +Lgng) |,
Ny,.. .,nd:1 AY Llnl + oo+ Ldnd
(14)
with
-1 s+l
h(D,S) = ( ) (15)

2D/2+S—l7TD/2 SF(S) .

Criticality is attained when the inverse squared correlation lergtl, ,, ... L4, ¢o), vanishes
in the largeN gap equation,



012304-5 Critical behavior of the compactified A ¢* theory J. Math. Phys. 46, 012304 (2005)

24\ dPdq
EZ(L]J e !Ldl(pO) = _rn%-'_ 12)\(PC2)+ D d
17 Lan,,.. nd_—oo (2m)
X , 16
o [ 2Ty 2 2’7Tnd 2 (16
S Ty A L, + &ALy, ... Lg po)
1

where ¢, is the normalized vacuum expectation value of the figldferent from zero in the
ordered phageln the disordered phaseg vanishes and the inverse correlation length equals the
physical mass, given below by E(L8). Recalling the condition,

(92
_U(D |—1, 2)
0"<Po

=m?, (17)
=0

whereU is the sum of the tree-level and one-loop contributions to the effective potémtimaém-
bering that at the larght limit it is enough to take the one-loop contribution to the Mmasse
obtain

d = (D12
MP(Ly, ... Lg) =MB(Ly, ... Lo) + —55 (2 )72 |:Z E_ ( ) Kprz)-1(mLim)

Lin
(D/2)-1
R
"2 E 2 ( W ) Kior-a(myLEne + Ling) + -
i<j=tnm=1 \ VL7 +Lin
> m (D/2)-1 .
- 22+ o 1122
+21 Y ( = ) K (pra-1(myLing + Land |-
nl .. .,nd=1 AY Llnl -+ Ldnd
(18)

Notice that, in writing Eq(18), we have suppressed the parcéP2-1[1-(D/2)JmP2 from its
square brackets, the parcel that emerges from the first term in the square bracketldl.Ekhis
expression, which does not depend explicitly lgndiverges forD even due to the poles of the
gamma function; in this case, this parcel is subtracted to get a renormalized mass equati»dn. For
odd,I'[1-(D/2)] is finite but we also subtract this terfmorresponding to a finite renormalizatjon

for sake of uniformity; besides, fdd= 3, the factormP=2? does not contribute in the criticality.

The vanishing of Eq(18) defines criticality for our compactified system. We claim that,
takingd=1, d=2, andd=3 with D=3, we are able to describe, respectively, the critical behavior
of samples of materials in the form of films, wires, and grains. Notice that the parametethe
right-hand side of Eq(18) is the boundary-modified mass(L4, ...,Lq), which means that Eq.

(18) is a self-consistency equation, a very complicated modified Schwinger—Dyson equation for
the mass, not soluble by algebraic means. Nevertheless, as we will see in the next sections, a
solution is possible at criticality, which allows us to obtain a closed formula for the boundary-
dependent critical temperature.

lll. CRITICAL BEHAVIOR FOR FILMS

We now consider the simplest particular case of the compactification of only one spatial
dimension, with the system confined between two parallel planes a distaapart from one
another. This case, which has already been considered in Ref. 5 concerning with the two-
component model, is reanalyzed here to set the required renormalization procedure in the proper
largeN grounds and, also, for the sake of completeness. Thus, frortilBytakingd=1, we get
in the disordered phase
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24\ “ m \(P/2-1
(27T)D/221 (E) Kprz)-1(nLm), (19
n=

mP(L) = mp(L) +

whereL (=L,) is the separation between the planes, the film thickness. If we limit ourselves to the
neighborhood of criticalityn?~0) and considet. finite and sufficiently small, we may use an
asymptotic formula for small values of the argument of Bessel functions,

2l
K.(2) = %F(Ivl)@) (z=0), (20

and Eq.(19) reduces, foD >3, to

(9N D
mA(L) zﬁ(mmr(;—l)gm—z), (22)

where(D-2) is the Riemanrzetafunction, defined for R -2} > 1 by the series

1
{(D-2)=2 po=t (22)
n=1

It is worth mentioning that folD=4, takingm?(L)=0 and making the appropriate changés
— B,\—\/4!), Eq. (21) is formally identicalto the high-temperatur@ow values ofB) critical
equation obtained in Ref. 9, thus providing a check of our calculations.

For D=3, Eq. (21) can be made physically meaningful by a regularization procedure as
follows. We consider the analytic continuation of thetafunction, leading to a meromorphic
function having only one simple pole at 1, which satisfies the reflection formula

__ 1 1-2) g
{(2)= F(z/2)F< > )ﬂl {(1-2). (23

Next, remembering the formula

| 1]
Lm{é(z) - ZTJ =7 (24)

where y=0.5772 is the Euler—-Mascheroni constant, we defineLthependent bare mass fbr
~3, in such a way that the pole Bt=3 in Eq.(21) is suppressed, that is we take

16
(D-3)wL’

my(L) =~ M (25)

whereM is independent oD. To fix the finite term, we make the simplest choice satisfying

M =mi(T) = a(T-Ty), (26)

To being the bulk critical temperature. In this case, using(86) in Eqg. (21) and taking the limit
asD — 3, theL-dependent renormalized mass term in the vicinity of criticality becomes

mA(L) = (T = T(L), (27)

where the modifiedl.-dependent, transition temperature is given by

N
T(L)=Ty-Ci—, (28)
al

L being the thickness of the film, with the const&itgiven by
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6
c,= 2 ~1.1024. (29)
T

From this equation, we see that forsmaller than

Ly = Cy (30
min — “~1 TO,

T.(L) becomes negative, meaning that the transition does not dceur.

IV. CRITICAL BEHAVIOR FOR WIRES

We now focus on the situation where two spatial dimensions are compactified. FradBEq.
taking d=2, we get(in the disordered phage

24\ ” (D/2)-1
mP(Ly,Ly) = mp(Ly,L 2)+(2 T nzl(m_l) Kor2)-1(nLim)

= m (021
+ <—> Kprz)-1(nLym)
nL,

§ m (DI2)-1
+2 —_—_— K (m\Ln L2n2) (32
o (V/—Lln1+L§n§) (D/2)- 1M T Lol
If we limit ourselves to the neighborhood of criticality’ ~ 0, and taking bot., andL, finite and
sufficiently small, we may use E@20) to rewrite Eq.(31) as

6)\ D 1 1 D-2
-t (2 o2 (220
1

2
(32

whereE,[(D-2)/2;L4,L,] is the generalize@multidimensional Epsteinzetafunction defined by

E2<D 2 Llil—z) E [L1n1 2”2] (G212, (33
2 ny,no=1
for Re[D} > 3.

As mentioned before, the Riemarmetafunction {(D-2) has an analytical extension to the
whole complexD-plane, having a unique simple polef residue 1 at D=3. One can also
construct analytical continuation@nd recurrence relationgor the multidimensional Epstein
functions which permit to write them in terms of Kelvin and Riemaetafunctions. To start one
considers the analytical continuation of the Epstein—Huraétafunction given b)’?

- 1 Vrr 1 - )
El (N?+p?)"=- P 2t 2021 () [T<v— 5) + 421 (mpn)” YK 1 p(27pn) | (34)
n= n=

Using this relation to perform one of the sumg#8) leads immediately to the question of which
sum is first evaluated. As it is done in Ref. 10, whatever the sum one chooses to perform first, the
manifestlL, < L, symmetry of Eq(33) is lost; to overcome such an obstacle, in order to preserve
this symmetry, we adopt here a symmetrized summation generalizing the prescription introduced
in Ref. 1 for the case of many variables.

To derive an analytical continuation and symmetrized recurrence relations for the multidimen-
sional Epstein functions, we start by taking these functions defined as the symmetrized summa-
tions
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Ed(V; Ll! e lLd) E E 2 [O.an -t O’gng]_ya (35)
d o =1 ng=1
whereg; =a(L;), with o running in the set of all permutations of the parametgrs.. L4 and the
summations oveny, ... ,ng being taken in the given order. Applyiri84) to perform the sum over
ng, one gets

\"77‘ 1 —~ )
E4q(v;Ly, ... Ly =— E, + E N
a(vily a) ng a-1(v; . ..) 2 dr'(») ( )% L d- 1<V 2
+ 2\"’”w< = L) (36)
dl'(v) ° VTl kd )

where the hat over the parametgrin the functionsEy_; means that it is excluded from the set
{L1, ... ,Lq} (the others being thd-1 parameters oE,_;), and

i )nKﬂ(zzni (+E|2;|2+)),
)

Pt (L\/( L2n2+--- !

[

d 1
Wy(7iLy, ... Lg) = 2—
|:1L

(37)
with (---+L2n’+---) representing the sum_;L’n’~L’n’. In particular, noticing thaky(v;L;)
=L;?"¢(2v), one finds

%)
\'7TF —
E(D—_Z-LZL2>——1< . ! )g(D 2)+ 2 ( SR )g(D—s)
AT )T\ D-2) \LL9?° L7,
4r| ——
2
\/7_7 D-3
+ D—2 W2 2 ;Ll!LZ i (38)
%)
2

which is a meromorphic function oD, symmetric in the parametels;, and L, as Eq.(33)
suggests.
Using the above expression, E§2) can be rewritten as

1 1 D-2
mA(Ly, Lp) = mg(Ly, L 2)+ {(L L2D_2>F< > )Z(D—Z)

+'”< t 1 )F(D_3>§(D 3) + 2 w( 3L L) (39)
LR, 2 VT T e |

This equation presents no problems fer B <4 but, forD=3, the first and second terms between
the square brackets of E¢R9) are divergent due to th&function andI’-function, respectively.
We can deal with divergences remembering the property in(Zf.and using the expansion of
I'[(D-3)/2] aroundD=3,

D-3) 2
r( 5 ) ST, (40)

I'’(z) standing for the derivative of thie-function with respect ta. Forz=1 it coincides with the
Euler digamma-functions(1), which has the particular valug(1) =—v. We notice however, that
differently from the case treated in the preceding section, where a renormalization procedure was
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needed, here the two divergent terms generated by the use of forfdiasmd(40) cancel exactly
between them. No renormalization is needed. Thus,Cfer3, taking the bare mass given by
ﬁ(Ll,Lz):a(T—To), we obtain the renormalized boundary-dependent mass term in the form

M?(Ly,Ly) = (T = Te(Ly, L), (41)

with the boundary-dependent critical temperature given by

ONy[ 1 1 [ON
Te(Ly,Ly) =To- _<_ + _) - —W,(0;L4,Ly), (42
2ma\L; L, TA
where
o)1 L 1 L
Wz(o;l_l, Lz) = E {_Ko(z’ﬂ'_znln2> + _Ko(z’ﬂ'_lnlnz)} . (43)
ny,no=1 Ll I-l L2 I—2

The quantityW,(0;L4,L,), appearing in Eq(42), involves complicated double sums, very
difficult to handle forl; # L,; in particular, it is not possible to take limits suchlas- . For this
reason we will restrict ourselves to the caseL,. For a wire with the square transversal section,
we havel,=L,=L=VA and Eq.(42) reduces to

A
To(A) =To- Co—=, (44)
aVA
whereC, is a constant given by
9y 12
Co= X +=5 S Ky(2mnyny) ~ 1.6571. (45)

T T npn,=1

We see that the critical temperature of the square wire depends on the bulk critical temperature
and the Ginzburg-Landau parameter&ind A (which are characteristics of the material consti-
tuting the wirg, and also on the area of its cross section. Sificelecreases linearly with the
inverse of the side of the square, this suggests that there is a minimal area for T#Agh,
=0,

2
Amin:(C A ) ; (46)

2
C(TO

for square wires of the transversal section areas smaller than this value, in the context of our model
the transition should be suppressed. On topological grounds, we expe@hetfrom appropri-

ate coefficientsour result should be independent of the transverse section shape of the wire, at
least for transversal sectional regular polygons.

V. CRITICAL BEHAVIOR FOR GRAINS

We now turn our attention to the case where all three spatial dimensions are compactified,
corresponding to the system confined in a box of sidgd,,L;. Takingd=3 in Eqg. (18) and
using Eq.(20), we obtain(for sufficiently smallL,,L,,L5 and in the neighborhood of classicality,
m?=0)
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6 D-2 D-2 D-2
m2('—1:|—2v|—3)“F‘%(LlleyLs)*'ﬂ_T)\/z ( )[E {(- ) 22 EZ( ;Li,Lj>

| i<j=1 2
D-2
+ 4E, > Ly, Lo s |, (47)

whereE;(v;Lq,L,,L3) = Enln g l[L2 2n2 3n3] and the function&, are given by Eq(398).
The analytical structure of the functioBy[(D-2)/2;L,,L,,L3] can be obtained from the
general symmetrized recurrence relation given by E8@). and (37); explicitly, one has

D-3

-
3 w’wf'(—) 3
D-2 1 D-2 2 (1+ey) 1
E3<T;L1:L21L3> :_6_2 EZ(_;Liij> + > fe =

6F(D—z) i 2L
2

D-2 2\ D-3
I (D _ 2) W3 2 ;L11L21L3 ’ (48)
2

whereg;j is the totally antisymmetric symbol and the functidf is a particular case of E¢37).
Using Eqs.(38) and(48), the boundary dependent mass can be written as

6N |1 (D=2 1
mZ(Ll.Lz,L:azﬁ(Ll.Lz,stWD,Z[EF( 5 )E - 5{(D - 2)+—§<D 3

e I

S \LPL L'? 3, 2 3 .54

a D-4 (1+s,k)1< 1 1 )
+—{(D-4T ) ! +
6§( )< 2 IJE“ 2 L\ L

3
2 l+g,)1 (D-4 8yr (D-3
275 | S'Jk)—wz( ;LJ,L> ! w3( ;Ll,LZ,L3> .
3.5 2 L 2 3 2

(49)

The first two terms in the square brackets of &) diverge asD — 3 due to the poles of thE
and {-functions. However, as it happens in the case of wires, using (2dsand (40) it can be
shown that these divergences cancel exactly one another. After some simplificatidhs,3pthe
boundary dependent mag9) becomes

3
6N | y 4 T+ep) Li
MP(Ly, Ly, La) = Mh(Ly, Lo, La) + — [ >i.2 E Wa(0:L L) + 7 E —
m 2|1L 3|<]l Ijkl 2 LLk

2\77' 2 (1+8I]k)1
3 ikt 2

8
Wz( 2;Lj1|—k) + §W3(0;|-1,|-2,|-3)] : (50)

As before, since no divergences need to be suppressed, we can take the bare mass given by
me(Ly,Ly,Le)=a(T-Tg) and rewrite the renormalized mass as¥(Ly,L,,Lg)~a(T
-T.(L4,Ly,L3)). The expression of(L4,L,,L3) can be easily obtained from E¢pO0), but it is a
very complicated formula, involving multiple sums, which makes almost impossible a general
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analytical study for arbitrary parameteks,L,,Ls; thus, we restrict ourselves to the situation
wherelL,=L,=L3=L, corresponding to a cubic box of volunw=L3. In this case, the boundary
dependent critical temperature reduces to

T(V)=Tp=-C3 (51)

A
av1/3 !

where the constar@; is given by[using thatK_,,(z) =\ 7/2z€7]

9 12 e—anlnz 48 48
L + 2 2 Ko(2mnyny) + — 2 Ko(2mmy VN2 + nd) ~ 2.7657.

Cg =1+—+—
T Tnn=1 M T nyny=1 T nynpng=1
(52
One sees that the minimal volume of the cubic grain sustaining the transition is
A 3
Vmin = <C3 ) (53)
CYTO

VI. CONCLUSIONS

In this paper we have discussed the spontaneous symmetry breaking @f¢thg theory
compactified ind=D Euclidean dimensions, extending some results of Ref. 1. We have param-
etrized the bare mass term in the fomf;(T—TO), thus placing the analysis within the Ginzburg—
Landau framework. We focused on the situations viith3 andd=1,2, 3,correspondindin the
context of condensed matter systérs films, wires, and grains, respectively, undergoing phase
transitions which may be described pyiean-field Ginzburg—Landau models. This generalizes to
more compactified dimensions of previous investigations on the superconducting transition in
films, both without and in the presence of a magnetic fidn all cases studied here, in the
absence of gauge fluctuations, we found that the boundary-dependent critical temperature de-
creases linearly with the inverse of the linear dimensiom, (L) =Tq—Cy4\/aL, wherea and\ are
the Ginzgurg—Landau parameterg,is the bulk transition temperature, a@g is a constant equal
to 1.1024, 1.6571, and 2.6757 fd=1 (film), d=2 (square wirg, andd=3 (cubic grain, respec-
tively. Such behavior suggests the existence of a minimal size of the system below which the
transition is suppressed. It is worth mentioning that having the transition temperature scaling with
the inverse of the relevant length for all the cases analyzedilms, wires, and grainsis in
accordance with what one learns from finite-size scaling argunients.

These findings seems to beqnalitativeagreement with results for the existence of a minimal
thickness for disappearance of superconductivity in fittng Experimental investigations in
nanowires searching to establish whether there is a limit to how thin a superconducting wire can
be, while retaining its superconducting character, have also drawn the attention of researchers; for
example, in Ref. 17 the behavior of nanowires has been studied. Similar questions have also been
raised concerning the behavior of superconducting nanog]r%\’rﬁsxlevertheless, an important
point to be emphasized is that our results are obtained in a field-theoretical framework and do not
depend on microscopic details of the material involved nor account for the influence of manufac-
turing aspects of the sample; in other words, our results emerge solely as a topological effect of the
compactification of the Ginzburg—Landau model in a subspace. Detailed microscopic analysis is
required if one attempts to account quantitatively for experimental observations which might
deviate from our mean field results.
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We establish a uniqueness result for the topological multivortex solution to the
self-dual equations of the Abelian relativistic self-dual Chern—-Simons—Higgs
model. We prove that the topological multivortex solution is unique if the Chern—
Simons coupling parametar> 0 is sufficiently small. We also establish a unique-
ness result foi >0 sufficiently large. ©2005 American Institute of Physics.

[DOI: 10.1063/1.1834694

I. INTRODUCTION

Chern—-Simons theories have attracted much attention as they are believed relevant to physical
phenomena such as high-temperature superconductivity and anyon physics. In particular,
Hong-Kim-Pat® and Jackiw—Weinbeld proposed an Abelian Chern—Simons—Higgs model
whose dynamics is governed only by the Chern—Simons term. This model is given(2+the
dimensional Minkowski space with metrg;,,=diag1,-1,-1. When a suitable Higgs potential
is chosen, this model admits a self-dual structure which enables us to study the static solutions
rigorously.

The Lagrangian densi1c§/19 is given by

K — 1
L= ZS“””FWAP +9*'D,¢D ¢~ p|¢|2(1 -2,

where A, (u=0,1,2 is a real gauge field q@?’, ¢ is the complex-valued Higgs field; ,,
=d,A,—d,A, is the curvature tensob ,=d,—V—-1A, is the gauge covariant derivative;'” is
totally skew symmetric tensor with®?=1, and«>0 is the Chern—-Simons coupling constant.
Hereafter, we let=-1.

The Euler—Lagrange equations corresponding tare given by

26", =1(6D7 = D7),

(1.3)
1
DD ¢ =~ ;(|¢|2— D@E|4* - D¢

We seek the static configuration ¢L.1). Then, thep=0 component of(1.1) yields «F;,
=-2A¢|#[2, which in turn implies that the corresponding static energy density is given by

3E|ectronic mail: kschoe@math.snu.ac.kr

0022-2488/2005/46(1)/012305/22/$22.50 46, 012305-1 © 2005 American Institute of Physics
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22
£="5T124 D g2+ D, + 5|21 - |22
4| ¢| K
kFip, 1 2 . R
= de * ;|¢|(|¢|2_ 1)| +|D1p+iDypf?£F, |8]k<9j(¢Dk¢)-

By taking the conjugateg, -A,) of (¢,A,) if necessary, we may choose the upper sign in the
above formula. If¢||D¢|=0(|x|™1) as|x|— o, thenE=[y2 Edx= [2 F1,dx, and the minimum is
saturated if and only if#,A,) satisfies the following self-dual equations:

D1¢+iD,¢=0,

2 a2 _
F12+E|¢| (l¢|*-1) =0, (1.2

KkF 15+ 2A|$*= 0.

In order to make the total enerdy finite, we impose a suitable boundary condition ¢n
either limy_..|(x)|=1 or limy_..|(x)[=0. The former boundary condition is called topological,
the latter one nontopological.

In this paper, we prove that the self-dual equatigh®) admit a unique topological solution
if x>0 is sufficiently small. Ag1.2) admits the invariancé,,—A,+d,7 and d— ¢ for any
smooth functionzn=#5(x;,X,), our uniqueness result is established in the sense of equivalence
class.(See Main Theorem beloyv.

It follows from the argument of Jaffe—TauB(g_matqﬁ admits a discrete set of zeros. Then, we
can establish existence results for the self-dual equatib@@s such that¢ vanishes at any pre-
scribed pointspy, ... ,py, e R? with multiplicities nq, ... ,n, € Z,, respectively. For this purpose,
we follow the argument in Ref. 20 to reduce the self-dual equati@® to a single elliptic
equation. Introduce a real-valued functiorby

m
¢:exp[g+2i arg{z—pj)] (1.3
=1
Then,u satisfies
4 m
Au= —e'(e' -1 +4m> ng,, R (1.4
K j=1

Once a solutioru of (1.4) is found, we can construct a solutige,A,) by (1.3) and

A=-Rdid In¢), A,=—Im@id In¢) with =g +ids. (1.5

A solution u of (1.4 is topological if limy_...u(x)=0, and nontopological if lig_..u(x)=-. In
both cases, it turns out thap||D¢|=0(|x|~2) as|x|— . In the sequel, we let

m
N:Enj.
=1

Then, it is well knownE=[2 F;, dx=27N if u=In|¢|? is topological. However, ifi is nontopo-
logical, E may take all the values in an interv@ee, e.g., Lemma 2.2 belpvwMoreover, it is also

well known that the magnetic flusb and electric charg® are given byd=[F;, dx=E and Q

=k [ F4, dx, respectively. We refer to the books Refs. 15 and 31 for detailed description of self-
dual Chern—-Simons theories.
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Several existence results are now available for the equétidn The existence result for a
topological solution was first established by Wa?ﬂgSpruck—Yané8 constructed a topological
solution via the iterative method, which is an efficient algorithm for a numerical solution.

For a nontopological solution, Spruck—Y&ﬁ@onstructed a radially symmetric solution for
the special casp;=---=p,,=0. The result in Ref. 27 was refined by Chenall® and later by
Chanet al® In Ref. 8, they have established a uniqueness result for radial solutions: If
=---=p,=0 and a constam®> 2N +4 is given,(1.4) admits a unique radial solutiar(r) such that
u(r)==p8In r+0(1) nearw. The existence result for the general case wipgre.. ,p,, is arbitrary
was established by Chae—Imanuviloit also turns out in Ref. 7 that iN>0, (1.4 admits a
one-parameter family of nonradial solutions even if the vortex pgifgsare located at the origin.
Hence, we cannot expect the uniqueness of nontopological solutiofk.4ffor N>0. It is
believed that multiple existence for nontopological solutions depends on the total vortex fimber
and the location of vortex points;. If N=0, for instance, it can be proved by the method of
moving plane¥’ that every nontopological zero-vortex solution is radially symmetric with respect
to some point ifk2. If N>0, we cannot expect such symmetry any longer. Moreover, @hatf
recently constructed a nontopological solution concentrating at each vortex{pgint. ,p,} if
11,/ p;—pyl is independent ok.

Then, it is quite natural to ask if Eq1.4) admits a unique topological solution for eagh
>0. The uniqueness of a radial topological solution has been proved in Ref. pp=1f-=p,,
=0 in (1.4), it has been proved by Hahthat every topological solution is radially symmetric.
Therefore, the uniqueness for the special gase - =p,,=0 has been established.

In this paper, we establish uniqueness for a topological solutior fo® sufficiently small.

Theorem 1.1: Let py,...,pne R? and n,, ... ,n,eZ, be given. Then, there is a constant
Kko=Ko(P1s -+ »Pms N1, - -+ N >0 such that for0< k< «y, EQ. (1.4) admits a unique topological
solution

Given py,...,pme R? andny, ... ,n,eZ,, we also establish a uniqueness result £or 0
sufficiently large.

Theorem 1.2: There is a constank;=x4(p1, - -+ ,Pm:N1, - - - Ny >0 such that fork> «; Eq.
(1.4) admits a unique topological solution

Once Theorem 1.1 is proved, we can state the uniqueness result for a solutiyp of the

self-dual equationsl.2). Assume that¢,A,) and(zz),A ) are two solutions subject to the topo-
logical boundary condition Im_,w|¢>(x)|—I|m‘x|_,w|¢(x)|—1 Then, it is obvious thaAO A,. Since
V X (A A)=0 with A—A= (Al A;,A,—-A,), there is a smooth function such thatA—A=V 7. Let

a=A;+iA, and a—A1+|A2 for simplicity. Then, we can rewrite the first equation of the self-dual
equationg1.2) as

Jp=iap and JPp=iad.

Then, we obtain tha# (¢e ) =iade ', which in turn implies that" (¢e 7/ $)=0. If ¢ and ¢
have zeros in common, we conclude tifst ¢€'7*" for some holomorphic functioh. Due to the
topological boundary conditio, must be a constant. Then, we have the uniqueness result for the
topological solutions of the self-dual equatiaiis2).

Main Theorem: Given a topolog|cal solution uof (1.4), let (¢ A(K) be given by (1.3) and
(1.5) and A”=(1/x)|¢"[A(1-|¢*|). Then, there are constantso,K1>O such that if x
€ (0,k0) U (k1,%) then any topological solutior{¢, ;)) of (1.2) satisfies g( AO"), Al
~AW=V 5. and $¥'= e« for a real-valued smooth function,.

We will prove Theorem 1.1 in Sec. Ill, but we sketch the proof here. We first prove that if
x>0 is sufficiently small, then any topological solutiapis approximated by the sum of rescaled
radial topological solutions. More precisely, givepe Z,, we let ¢; be the radial topological
solution of(1.4) ,-,. Then, we will show that if we defing, by
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m 2 N
ZK(X)=i3 u (0 = 2 XX, 2x=py) ., xeR?
K j=1 K

then|zJln2rz=0(1) ask—0*. Here, x; € C5(R?) is a cutoff function which is identically 1 near
the vortex pointp;. Then, we will construct a functionab,.: H3(R?) — H3(R?) in such a way that
z. is a fixed point of®, for x>0 sufficiently small. Indeed, it will turn out thab, is a well-
defined contraction mapping on a suitable closed suBseft H?(R?), andz, € B for k>0 suffi-
ciently small. Then, Theorem 1.1 immediately follows from uniqueness of a fixed poifit in
Thus, it is a crucial step to obtain the asymptotic behavior of a topological soluficas
— 0"

It has been proved by Tarantéffthat the “maximal” topological solution, satisfies

m

4 |
—eM(1—e%) — 472, n; &, inthe measure sense as — 0".
K i

=1

Thus, given any topological solutian,, we need to look into the concentration phenomenaifor
near eaclp; for x>0 sufficiently small. For this purpose, we divid¥ into two disjoint sets,
Q4=U;By(p;) and the complement &, and apply well-known arguments for uniform estimates
and concentration phenomenaupin Q4. (See, e.g., Refs. 5, 23, 22, 9, and 3, and references
therein)

Instead of typical topological/nontopological boundary conditions, one may impose the
't Hooft periodic boundary condition on the static configuratior{lfl) and study the equation on
a flat torus 2 =R?/(aZ x bZ) with a,b>0. We can also derive self-dual equatighs?) under the
periodic boundary condition, and study the following equation for an unknowin|¢|%:

m

4
Au=—el(e' - +4m2 ng, in Q. (1.6
K j=1

An existence result fof1.6) was established by Caffarelli—Ya%gype | below, and later refined
by Tarantello® Tarantello, among other things, established multiple existence results.@rIn
particular, Tarantello proved thatM=1 then the self-dual equations admit at least two solutions

(¢, A) and (¢* , A®) such that

@ |p¥|—1 ae. ask—0" (type I),

(b) 0g=0, (1/&))][¢")caq) < C, for some constan€,> 0 (type I).
If N=2, the situation becomes more delicate, and it requires a different approach to establish
such multiple existence results. In this case, @gd) may admit bubble solutiong® such
that

(© Fyep® A®) -3 m&,, asx— 0" in the sense of measure for somg>0 andg, Q.
Moreover, 1k?|¢"|co)— 0 for anyKC C Q\{ay, ... ,q} (type ).

Many experts have pointed Gtt>**3hat it is related to the concentration phenomena for a
mean-field equation to classify and construct solutions of type Il and type Ill. Recently, it was
reported by Nolas@ that Eq.(1.4) admits a solution concentrating at the vortex points #or
>0 sufficiently small. We also refer to Refs. 5, 23, 22, 9, and 3 for the concentration phenomena
for a mean-field equation.

We are interested in the solution of type I. In the following theorem we establish uniqueness
result for the solution of type I.

Theorem 1.3: Let Q=R?/(aZ X DbZ) be a flat 2-torus. Then, there exists a constant
=k1(P1y -+ sPmy M, - - - ,N) >0 such that for0< «< k; EQ. (1.6) admits unique periodic solution
u=In |¢|? which satisfies w0 a.e. ask— 0*.

From the mathematical point of view, it would be interesting to consider the general situation
where Eq.(1.6) is given on a Riemannian 2-manifol€, y) without boundary(See Ref. 14.In
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Sec. IV, we will consider such a general situation and establish uniqueness resutt Gosuffi-
ciently small. See Theorem 4.1. Theorem 1.3 is indeed a direct consequence of Theorem 4.1. The
proof of Theorem 4.1 is similar to that of Theorem 1.1, and we will sketch the proof in Sec. IV.

Theorem 1.3 shows that >0 is sufficiently small, any solution, of type | is indeed the
maximal solution constructed by Caffarelli—Ya?‘ng\/Ioreover, the second squtiot?;S“%N”)
found by Tarantell®’ satisfies/$*| —0 a.e. asx—0*. Theorems 1.1, 1.2, and 1.3 give a partial
affirmative answer to the questions raised by Yammd Dinget al** The above uniqueness result
would also be useful when we classify the solutionglof)) or (1.6) for x>0 sufficiently small.

This paper is organized as follows. In Sec. Il, we collect some well-known results on the
solutions of Eq(1.4). Section Il is devoted to the proof of Theorem 1.1 and Theorem 1.2. In Sec.
IV, we will sketch the proof of Theorem 1.3.

Il. PRELIMINARIES
Hereafter, we lekt=«/2 for the sake of simplicity, and rewrite E@L.4) as

m

1

Au=e'(e-1)+ 4w ns,, R (2.9
j=1

ux) —0 as |x — . (2.2

We will prove that givenp,,...,pneR? and nq,...,n,eZ,, there is a constante,
=€y(P1s -+« sPm, N1, - .- ,Nm) >0 such that for 6<e< ¢y, Egs.(2.1) and(2.2) admit a unique solu-
tion.
We begin this section by recalling some useful lemmas. Lemma A below is found in Ref. 16.
Lemma A: Given a domaifl C R?, let d,=dist(x, Q) for x € Q. Then u e C*(Q)) satisfies the
estimate

supdy Vu(x)| < C(supu| + supd?|Au(x)|).
Q Q Q

In the following two lemmas we collect well-known results for the special case where
=---=p,=0in Eq.(2.1). Instead of the topological boundary conditi@h?2), we impose a weaker
condition on(2.1).

Lemma 2.1: Let n be a non-negative integer, and u be a solution of the following equation:

Au=e“(e"- 1) +4mndy—g, R2?

2.3

j e'(1-eYdx=_C_C, 23
RZ

for some constant € 0. Then, either

lim u(x)=0

[x|—00

or

lim u(x) = — oo,

‘Xl*}OC
Moreover, we have

0] if u—0 nearo , then u is radially symmetric. Moreover, for eachR there is a constant
Cr>0 such thatlu(x)|+|Vu(x)|< Cge ™ for [x >R.
(i)  if u——o nearw, then 2 e'(1-e")dx>8m(1+n).

Proof: The proof may be well known to many experts, but we sketch it for completeness. It
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follows from the argument of Spruck—Yafigthat u<0 in R2. Hence, either lin_...u(x)=0 or

lim inf,_,.. u(x) <O. In the latter case, we claim lim igf... u(x)=—c. Otherwise, Lemma A

would imply that 2 €(1-€")dx=c, which yields a contradiction.

Moreover, it follows from the argument of Chenttthat there is a constap=B(u) >2 such
that u(x)=-p In|x|+O(1) nearc. Therefore, we conclude that if lim igf... u(x) <0 thenu(x)
=—g In|x|+0O(1) near« for some constang> 2.

(i) If limp_ux)=0, it follows from the method of moving planes that is radially
symmetrict’ Moreover, it is well known thati(x) < Cre" @3 for |x|=R, with R>0 suffi-
ciently large. Notice thatu-u=0(u?) neare. Comparingu with the comparison function
e, we can verify by maximum principle tham(x)|<Cgre for [x|=R with R>0 suffi-
ciently large. The estimate fgWu(x)| follows from Lemma A.

(2) I lim y_..u(x)=—o, then we have p2(e"-e?)dx=m(4n+2B). The inequality in(ii) follows
from the Pohozaev identity. Indeed, multiplyiig.1) by x- Vu and integrating by parts on
the domainX sg={X|6<|x| <R} with §,R>0, we obtain

J.

wherev is the outward normal vector of® 5. SinceVu(x)=p8x/[x|?+0(|x|"}) nearc, andu(x)
=2n In |x|+v neary=0 for some smooth function, we obtain

[%(x-v)|Vu|2—(x- Vu)(v- Vu)+%(x- v)ezu—(x-v)e”]da:f (€Y - 2e%)dx,
s

SR SR

1 1
f —(x- Vu)zdo:—f (2n+x- Vov)°do=8mn?+0(9),
ixi=s X] 6J =5

1 5 4n? 1
f —|X||Vu|2d0'=—f <l+0<—))da=4ﬂ'n2+0(5),
=0 2 2 s V8 N0

as$—0, and

f E(x-v)|Vu|2—(x- Vu)(v- Vu)}da:—rrﬂ%o(l) as R— o,
[x=R

Letting §— 0" and R—, we obtain 7(4n?- %) =[2(e?“- 2e")dx. Then, we havef2 edx
=m((B-2)?-4(n+1)?)>0. Hence,3>2n+4 and the desired inequality immediately follows.

Remark:The Pohozaev identity also implies thatif~0 nearx then [2 (e'—1)?dx=4mn?.
Indeed, proceeding as above, we obtain

J,

Letting 6— 0 andR— =, we obtain the desired result.

Spruck—Yang’ proved that ifn=0 then every nontrivial solution @2.3) is radially symmetric
with respect to some point. However,rif>0, it has been proved by Chae—Imanuvildiat Eq.
(2.3) admits a nonradial solution. If we limit our attention to the radial solution€2d) for n
=0, we have the uniqueness res@3) established by Cheet al’® and Chanet al;® the
topological radial solution is unique. Moreover, given a consgnt2n+4, (2.3) admits a unique
radial solutionu(r) such thatu(x)—2n In|x| is smooth, andi(r)=—8 In r+0O(1) asr— . More
precisely, we have

Lemma 2.2 (Chen et é?): Given a non-negative integer, tet u(r ;n,s) be the radial solution
of (2.3) such thatim,_y(u(r;n,s)—2n In r)=s andlim,_y(u,(r;n,s)-2n/r)=0. Then, there is a
constant se R such that

2

SR Z5R

(l(x- v)|Vul2=(x- Vu)(v- Vu)+ %(x v)(e¥ - 1)2>d0'= f (e - 1)%dy.

@) u(r;n,s,) —0 as r— oo,
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@iy Ifs<s, u(r;n,s,) —-o as r—oo,
(i) If s>s,, u(r;n,s, blows up at some=zr(s).

Moreover, if we define a functiof,: (—«,s,) —R,=(0,%) by

Bn(S) :f gurins)(1 — grinS)r g, (2.4
0

then Iims_,snﬁn(s) =, limg_,_..8,(8)=2n+4, and {B,(s)|s<s,}=(2n+4 ).

(Chan et af): g, is differentiable and strictly increasing in the interviates, s,).

Remark:lt is obvious thats,=0 if n=0 in (2.3).

Before proceeding, we fix some notations. For simplicity, wedefp,, ... ,pn} be the set of
vortex points. Given a positive constant 0, we let

m

Qr = _U Br(pj)-
=1

Hereafter, we denote by a cutoff function such that€ y<1, x(x)=1 for |x| < 1, andy(x)=0 for
|X|=2. Given a seft, we denote by2° the complement of. C,cy,... will denote constants
independent of. Throughout this paped is a fixed constant such that<&j<imin{|pk—pj|1
sk<jsmh

Denote by, the radial topological solution of the equation

A¢J = e¢j(e¢j - l) + 4’7TnJ5 =01

¢, —0 near . (2.5

We will prove in the following section that any solutien of (2.1) and(2.2) is “close” to the
rescaled radial solutiog;(e™'(x—p;) +p;) near each vortex poir;. Then, we need an estimate for
the linearized operator a; in order to obtaira priori estimates fou, nearx=p;.

Lemma 2.3: Let |:H%(R?) — L4R?) be the linearized operator

Li=A-e%(2e% - 1).

Then L;: H2(R?)—L2(R? is one-to-one, and moreover, there is a constaptOcsuch that
||LJ'U|||_2(\H2)ECHU”HZ(\RZ) forallue HZ(RZ)

Proof: We first show that ;: H%(R?) — L%R?) is one-to-one. Assume thate H3(R?) satisfies
L;u=0. By Fourier expansion, it suffices to study the following eigenvalue problem:

12
"+% k_ =e?(2e%i - 1
Uy r—rzuk—eJ(eJ— ) Uy,

u(r)=rk1+0(r)) near r=0, k=0,1,....
We first claim thatyy is positive inR, for all k=0. Let ap(r)zr(ﬁj’(r). Then, is positive inR ., and
#(r)=2N+0(r?"*?) nearr=0. By comparing/ with u,, we obtain thati,>0 in R,. Indeed, it is
easily checked that
J+ ‘bT =e?i(2e% - 1)+ 2e%i(e?i - 1).

Suppose thatly has a first zero at=ry>0, namely,uy(ro)=0 anduy>0 in the interval(0,r).
Then, integration by parts gives that
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o

0< J 2e%i(1 —e®i)ug rdr =[ryuf —rugy/ JP < 0,
0

which yields a contradiction. Henceg is positive inR,. A comparison lemma also shows that

u.>0 in R, for eachk=1. Indeed, if we suppose thaj has a first zero at=r,>0, then we

obtain

e 1,2

0< J " Yol dr =[ruguy - ruugl < 0,
0

which leads to a contradiction. Then, it is easily checked that Jifru,(r)/r]=c. Therefore, we

conclude thaker L; N H(IR?)={0}.

We now prove the second part. We argue by contradiction and suppose that there exists a
sequence{u,} C HA(R?) such that|uy||zz2)=1 while [L;uy| 2r2=0(1) as n—c. Passing to a
subsequence, we may assume that there emistdH2(R?) such thatu, — u. weakly in H3(R?)
and strongly inWP(Q) for 1< p< and any bounded domaip. It is obvious that;u.=0, and
henceu. =0. Consequentlyju,[1q)=0(1) asn— e for each bounded domaifl C R?.

Fix a constantR>0 such thate?®=2/3. Let Bé={|x|=r} and A ={r<|x|<r+1} for a
constantr >0. Choose a cutoff functioeor such that <o<1, =1 in Bg(0), and o(x)=0 for
|x|=R+1. Letu;,=ou, andu,,=(1-0)u,. Then, it is easy to check that

Liuzn=(1-0)Lju, -2V u,- Vo-uAo, (2.6)

and||u1n||H1(BR+l(o)):o(1) asn—ce. Multiplying (2.6) by u,,, and integrating by parts, we obtain

Iv u2n||L2(B°R) + ||u2n||L2(B°R) < C([lunllrag + ||Ljun||L2(B°R)) =0(1).

In particuIar,||un||H1(B%+l):0(1), which in turn implies thafu,||1z2=0(1) asn— . Consequently,
we obtain

ID?un]l2r2) = [AUGL2r2) < Unll 2z + L Ul 2r2) = 0(1),

which yields a contradiction. The proof of Lemma 2.3 is complete. O
Remark:SinceL;:H%R?) —L%(R?) is self-adjoint, it follows from Lemma 2.3 that; is an
isomorphism fromH4(R?) onto L%(R?).

IIl. UNIQUENESS OF A TOPOLOGICAL SOLUTION

We first prove Theorem 1.1. To this end, we first obtainah@iori estimates for a solution,
of (2.1) and(2.2) ase— 0*. Those estimates will be given in the following two lemmas.

Lemma 3.1: Let ube any topological solution a2.1). Then, there is a constargy=ey(d)
>0 such that if0<e< ¢, then

||Ue||H2<Qg) < Co exf - ¢/e], (3.1

for some positive constantg,c,; depending only on.d

Proof: We divide the proof into three steps.

Step 1:We claim that for each compact subget R?\ 2, there are constants.>0 and
v0(K) <0 such thatyy(K)<u,<0 in K for 0<e<e:.

Let

u-(0) =2 2n; Inx - pj,
]

andv.=u.~u. Fix a constanR>sug|p;|. Then, it suffices to prove that ¥>0 is sufficiently
small then ing v .= v, for some constanyg(R) <0.
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We argue by contradiction and suppose that there are sequepicasd{x,} C Bx(0) such that
€,— 0" andv, (x,)=infg v, — —o. For simplicity, we letv,: =v, .
Decompose,,=v,t+va,, Where

1
Avy,= e (e —1), Bg(0)
en

v1,=0, Bg(0)

and

{Avm:o, BR(0)
Uon=vpn, dBRg0).

By the Harnack inequality, we may assumg— —c uniformly on Bg(0).

On the other hand, following the argument of Tarant&llae can verify thav, is bounded
in W(l)'q(BR(O)) for each q<2. By passing to a subsequence, we may assumevihatv.,
weakly in Wcl,'q(BR(O)), and strongly inLP(Bg(0)) for 1<p<2g/(2-q). Consequentlyy,— —c°
almost everywhere 0Bg(0).

Consider the functiorBy(s) defined in(2.4), and fix a constany<0 such thatBy(sy) > 2N.
Let u,=v,+u.. For eachn, choosey, € R? such that

Un(Yn) =So and  |yn| = sud|x||un(x) = so.

Notice that infy=Un(X) =infiy- un(x) for eachr >sup|pj|. Sinceu,— - almost everywhere on
each compact subsey,| — .
Let uy(X)=u,(ex+Yy,). Then,u, satisfies

Aup=e'n(en—1), Qu ={X <|y,l/2€,}

f ein(l - ein)dxs 47N.
0

n

Sinceu,(0)=s, andu, <0, the argument of Brezis—MeFlémplies thafu, is bounded incP (Qp).
Then, we may assume that converges irClzoc(Rz) to u. which is a solution of

AU =e™(e" - 1), R2

f g™ (1 -e")dx < 4mN.
R2

Sinceu«(0)=s,< 0, Lemma 2.1 implies that. is radially symmetric with respect to some point in
[R2. Consequently

f e (1 —e™)dx= 2mBy(so) > 4N,
Rr?

which yields a contradiction.
Step 2:Recall thatQ4=U;By(p;). We claim thatu.— 0 in C%(Q5) as e— 0*. Moreover, if e
>0 is sufficiently small, then

ludii=og) =< c2 exH - cle] (3.2

for some constants,(d),cs(d) >0. We note that for eacd>0, ||ue||Lx(Qg) is attained ong().
Thus, it suffices to prov¢J€||Lx(md)$exp[—cgl €.

The second claim follows from the maximum principle. Indeed, fix two constant) and
m< 0 such thau,=m on Qf, for 0<e<e.. Then, it follows that
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-EAu +€™u, =0 on Q.

For eachxy € d ()4, we define a comparison functian, by

m
w(x)=(1- m)exp{%dx —Xo2-d%4)| for |x—xo <d/2.
€
It is easy to check that i€>0 is sufficiently small

- EZA(US+ Ws) + ezm(ue + We) >0 on Bd/Z(XO) .

Then, the maximum principle implies thé+w,)(X) > (Ue+W) |- J=a2> 0 for [x—xo| <d/2. In
particular, there is a constaest>0 such thatu(x)>—-exp[—c/€] for |[x—xg|<d/4. Since the
constanfc is indepedent of the choice &f € d(), (3.2) immediately follows.

Step 3:We now prove(3.1). Notice that||u6||Lx(Q(cﬂ2)$czexp[—csl €], and

€Au,~u,=0(D)|ul? in Qf,, (3.3

where O(1) denotes a quantity which is uniformly bounded @()§,). Let o be a smooth
function such that & o<1, o(x)=1 for x € Q5,,, anda(x)=0 for x € Q. Multiplying (3.3) by
ou, and integrating by parts, we obtain

2 2
62||VUE||L2<di/4) + ||u6|||_2(di/4) < C(d)|:JQ

= C(d)[exp(- c/e) +[|ud| =g lu

d\Qqr2

(@0l dufaxs [ |uf|3dx]

Q4
2
E||L2(Qg)]l
which in turn implies that ife> 0 is sufficiently small

el Vudizag, ) +ludlzng,,) < C(d)e exg-cyle]. (3.9

Choose a smooth functian such that G= o<1, o(x)=1 for x e Qg and(x) =0 for x € Q34,4 We
note that

ID?(Gu)|L2w2) = [AGUI 22 < ClAU 20, )+ ludlnzos, )- (3.5
3d/4 3d/4

Then, Lemma 3.1 is an immediate consequencdf) and(3.5). O
We now investigate the asymptotic behaviorupfin each ballBy(p;). For each kj<m, let
Ocj()=uex+p) for [x|<2d/e. Then,i,; satisfies

Al = e%i(elei - 1) + 475,09 for |X| < 2d/e, (3.6)

and|05,j(x)|:0(e‘°’f) for |x|=2d/e. It follows from the Pohozaev identity that

f (1 - €"ei)?dy = 47’ + o(e™), (3.7
ly|<2d/e

for some constant> 0.
The following lemma shows the asymptotic behavioilgf in the ballBy,(0).
Lemma 3.2: There is a constaat=¢;(d) >0 such that if0<e< ¢, then

Sﬁjp”cle,j = ¢jllnz(x=ae < Co €XH— Ci/e], (3.8

for some positive constants,@nd C, depending only on.d

Proof: It follows from Lemma 3.1 that ife>0 is sufficiently small, then there are positive
constantscy,c; such that|[Q j[[nzwe<x<2ae < Co € —C1/€]. The proof of Lemma 3.2 will be
given in three steps.
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Step 1:We claim thatl, ;- ¢;— 0 in C2(R?) ase—0".
Leto.;=0.;—2n; In[x. Then,o; satisfies

Ab ;= |X2elei(|x2eei ~ 1) for |x| < 2d/e,

f |X|2njeﬁf,](1 - |X|2njeae,j)d)(: 47Tn] + O(e—cle) ]
|x|<2d/e

We claim thato.; is bounded inCp(R?).

Indeed, sincéx|?e’«i<1, it follows from the Harnack inequality that eithér; is bounded in
Cioc(R?), or 0. j— —o0 uniformly on any compact subset BF. If o_;— —c on any compact subset,
then it follows thatf‘y‘gR(l—ef’f,i)zdy:7-rR2+o(1) as e—0" for eachR>0, which contradicts
(3.7. Therefore . is bounded inCy,.(R?).

By passing to a subsequence, we may assumevthatonverges uniformly ir(:ﬁ)C R?) to a

function v. e C4(R?), which satisfies

Avs = |X|2nie”*(

x?e* -1) in R?

X|?"e’ (1 - |x[2ie?)dx < 4an.
j
HZ

Let u-(x)=v«(x)+2n; In|x|. Then, Lemma 2.1 implies that(x) —0 as|x|—, and henceu is
radially symmetric. It follows from the uniqueness of radial topological soltfidmat U= .
Step 2:We claim sup<aq (0~ ¢;)(x)| —0 ase—0".
For simplicity, we let

Wej =Uej— ¢,
and fix a constaniR,> 0 such thae?®) =2/3. We argue by contradiction and suppose that there
exist sequencel,} and{x,} C BZd,en(O) such thate,— 0* and

|Wen,j (Xn)| = Sup |Wen,j(x)| = Yo
[x|<2d/e,
for some constanj,> 0. It follows from the previous step that,| — o, and we may assume that
Ro<|x,| <2d/e,. Let W,=W,_; for simplicity.
If Wyh(x,) >0, then we have

0= Ay () = %100+l (@00 W) — 1) — g0 (e#00) — 1) > 0,
which yields a contradiction. Consequentfy,(x,) <0. SinceAw,(x,) =0, we have
e¢j(xn)+wn(xn) + e¢J(Xn) = 1 .

Then, it follows from Lemma 2.1 thak,(x,) <In(e"%*-1) < —|x,|+C for some constan€. In
particular,w,(x,) — = asn— oo,

Since ¢; <0 and ¢;+w, <0, it follows from the Harnack inequality thag; +W,— - uni-
formly on Bg(x,). Then, it follows thaff|,, |<r(1—€**n)?dx=7R*+0(1), which contradictg3.7).

Step 3:We are now ready to prove the inequali8/8). Recall thaty is a cutoff function such
that 0< y<1, y=1 onB;(0) and y=0 outsideB,(0). Let o(x) = x(ex/d).

Since O<é'-1-t<(t?/2)¢"Y for te R, we havel;Ww,;=O(1)|W,,;[?> pointwise for |x|
=<2d/e. Then, it is easy to check that

Lj(o-e\ive,j) =2V we,j -V O'€+ We,jAoe+ 0(1)0'5|\?V5’j|2.

Let Ae:{d/e$|x|$2d/e}. Then, Lemma 2.3 implies that
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lloeWe Iz < Cle VW jllLza) + €W llLza,) + |S<L;E/ Wej()[loaWejll2r2)
X|= €

\
for some constan€=C(d) > 0. Since sup-,q.W,;(X)|=0(1) ase— 0", we obtain

N 2 <are) < [l jllnzra) < Ce[ VW flL2a ) + €l llL2(a )
< Ce|W, jllH2(@/e<ix<209 < Co X~ Ci/e]

for some constantS,,C; >0 if ¢>0 is sufficiently small. The proof of Lemma 3.2 is complgte.
For each kj=<m, let x;(x)=x((x—p;)/d). Given a solutioru, of (2.1) and(2.2), let

200= 2| w0 -2 x| 2] |, xer2 (3.9
€ j=1 €

For the sake of simplicity, we leg; (x)=¢;((x—p;)/€) for 1<j<m and €>0. Then, z,
e H2(R?) satisfies

J

1 1
AZEZ :seXF{E Xij ¢j,e+ ESZE:| <eX[{2 Xj ¢j,e + 6325:| - 1) - _52 Xje(bj'f(equ’é_ 1)
j j €

1 .
—;2 [2V X, Vet dAx] in RZ (3.10
i
and, moreover, it follows from Lemma 3.1 and Lemma 3.2 tfagf2z2)=0(1) ase—0".
Given a solutioru, of (2.1) and(2.2), we construct a functionab_: H?(R?) — H?(R?) in such

a way thatz, defined in(3.9) is a fixed point of®,. For this purpose, we define an auxiliary
functional F_.: H’(R?) — L%(R?) by

FE(U) =Av - éexp{z Xj¢j,€+ 630:|(eX[{E Xj¢j,€+ 63U:| - 1)
] j

1 1
+ 52 xieliee =D+ SR [2V x;- V o+ ¢y Ayl (3.1
J J

Indeed,®, will be defined in terms oF, andDF(0). In order to prove tha®, has a unique
fixed point in H2(R?), we show that®, is a well-defined contraction mapping on a suitable
bounded subse’ of H%(R?). Thus, we need to obtain some estimatesfpandDF (0). We prove
in the following lemma useful properties &f, for e>0 sufficiently small.

Lemma 3.3: Ife>0 is sufficiently small, we have

(@ [|FL0)]|L2r2 =<co exd—c;/ €] for some constantsygc; > 0.
(b) DF_0) is an isomophism from HR?) onto L?(R?), and there is a constant €0 such that

IDF(O)h]2r2 = Clhlluzrz)  forall h e HA(R?). (3.12
(© |IDF(2h-DF(0)hl 2z2 < Cel|l|s22) for [[Z]nzmz <1.

Proof:

(@ Estimate forF(0): We note thafF(0)=0 both on{4=U;By(p;) and onQ$,. Moreover, if
we set;=Byy(p;)\By(p;) for each k=j<m, it follows from Lemma 2.1 that

1S}J<pm(||¢j,e”L”(Ej) +[|V ¢j,e||L°°(2j)) < Cp exfd - c//€]

for some constantsy,c;>0. Then(a) follows from the inequalityet- 1| < |t|e!.
(b) Estimate for|DF (0)|: Notice that forh e H3(R?)
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DF_(0)h=Ah- éexp[g Xi ¢j,€]<2 exp[E Xiqu% - 1)h.
j j

The proof of(b) is essentially similar to that of Lemma 2.3. We argue by contradiction and
suppose there are sequendeg and {h,} C H%(R?) such thate,— 0%, |hy[|ls2r2=1, and
IDF (0)hy|L2r2 =0(1) asn— c.

For each kj=<m, we leto;(x)=x(4(x-p;)/d) andFln:(l—Ej a))h, Then,Fln satisfies

-~ 1 ~
Ahn - ?nexﬁizj Xl¢lv5n:|<2 eXﬁ:Ej XJ ¢j’en] - 1>hn

=->2Vh,- VEJ-—EhnA5j+<l—25j>DFEn(0)hn. (3.13
j j i

Recall Qf=[U;B,(p;)]° for a constantr >0. Multiplying (3.13 by h, and integrating by
parts, we obtain fon sufficiently large

- 1~ 5 ~
IVhdll2qe ) * ?n||hn||Lz(Q§/4) < Clhillzag, (IMllkaog ) + IDF e (Ohlliz0s, ) (3.14

d/4 dr4

for some constan€=C(d) >0. Then, it follows from the assumption that

”V hn”LZ(QC

a2 = ”V hn||L2(Q

[ c
d/4) d/4)

1 1~
* ZIhag +

< Cen([Mnllzag,) + IDFe (O)illizag ) < Cen. (3.15)
Let o} (x) = x(2(x~p;)/d) andh,=(1-X; o;)h,. By repeating the above argumeBt13 and

(3.14) on QF,,, we obtain

[Vhy, hy

1
204y + Il zag,) < Ceq(IMnllsos ) + [DF (ONllizas ) = oley) as n— .

(3.1

Then, it follows that [l 2 )=0(€) and hence[Ahlzqe ,=0(1). Consequently,
eIz =1+0(1) asn— .

On the other hand, for each=1,... m, let x;(x)=x((x—p;)/d) and hj,=x;h,. Let
ﬁn(x)=hn(enx+pj), Xi(¥)=x;(ex+p;), and ﬁjn=5(jﬁn. We also lets;={d=<|x—p;|<2d} and
So={d/ e, <|x| <2d/e,}.

Then it is easily checked th&;n satisfies

Lihin =2V hy - V §; + AR + €% (0[DF. (Ohal(ex+ p))
+[ehi%(2e4% - 1) - e?i(2e% - Dhy, for || < 2d/e,. (3.17
Notice that the last term i83.17) vanishes outsidéo. Then, it follows from(3.16 and
Lemma 2.3 that
jnllvzre) < ClelV F1n||L2(io) + ||F‘n||L2(iO) + En”DFen(O)hn”Lz(Bd(pj)))
< Cleg|Vhllzs ) + 651||hn||L2(zj) + &[[DF . (0)hyll2g,(pj)) =0(€r) as n— oo,

ConsequentIyL|hn||Hz(Bd(pj))$||hjn||Hz(‘Hz):o(1) for each I=<j=<m, which yields a contradic-
tion. Therefore(3.12) is proved.
Since DF(0): H?(R?) — L%(R?) is self-adjoint(3.12 implies thatDF(0) is indeed an iso-
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morphism fromH?(R?) onto L?(R?), and moreover|[DF (0)]"Y|<C for >0 sufficiently
small.
(c) Estimate for|DF (z)-DF(0)|: Notice that

DF.(2)h - DF (O)h = é%eXp[E 2x, ¢j,6] (exf2€%2] - Dh + 6—12
j

xexp[z Xi ¢>J-,E](exp{e3z] -1h.
j

Then (c) immediately follows from the embeddirg?(R?) — L*(R?). O
We are now in a position to prove Theorem 1.1
Proof of Theorem 1.1Following Ref. 24, we define a functiondi,: H2(R?) — H?(R?) by
@ (v) =v - [DF(0)]'F (v). (3.19

Then, it suffices to prove that, admits a unique fixed point iIH2(R?) for e> 0 sufficiently small.
Let B={u € H%(R?)||ully2r2 < 1}. Then, it follows from Lemma 3.1 and Lemma 3.2 that for each
topological solutioru, of (2.1), z. € H3(R?) defined in(3.9) is a fixed point of®,, and moreover,
z. € B for >0 sufficiently small.
We claim thatd,: B— B is a well-defined contraction mapping fer-0 sufficiently small.
Observe that

D® (2h=-[DF(0)] XDF(2) -DF(0))h for ze B, he H*R?.

Then, it follows from Lemma 3.3 that ¥>0 is sufficiently small

ID® ()22 < [[DF L0)]7] (DF (2) = DFO) i 2x2) < Ceflhl 2

for ze B. Moreover, it also follows from Lemma 3.3 that

[®(0)[lz(r2) < ClIF (0)]lL2r2) < C exd - cle].

Assume thav,vq,v, € B are given. Ife>0 is sufficiently small we obtain

[P 0)llh2r2) < |[PLO)[n2r2) + [ Pelv) = PLO)|z(n2)
< ||®(0)[n2r2 + (SUBI?HD¢E(Z)||)||U||H2(1R2) < C(exd—-cle] +¢),
Ze

and

[®(vy) = (I)e(vz)”HZ(RZ) = (fUZE“DCDe(Z)”)”Ul - Uz||H2(R2) < Celv, - Uz||H2(R2)-

Therefore, ife>0 is sufficiently small®.:5— B is well-defined contraction mapping, which in
turn implies that®, has the unique fixed poinb, € B.

On the other hand, recall the functigndefined in(3.9) is also the fixed point of the mapping
@, and |z/zz2=0(1) as e— 0*. Therefore, by the uniqueness of the fixed poit w, for €
>0 sufficiently small.

The proof of Theorem 1.1 is complete. O

We will prove Theorem 1.2 in the rest of this section.

For simplicity, we leta=2/«. Then, it suffices to prove that the following equation:
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m

Au=el(e'~ 1) +4m2 oy, R (3.19
=1

admits a unique topological solution é>0 is sufficiently small. To this end, we follow the
argument in the proof of Theorem 1.1, and show that any topological soluti@ X8 satisfies a
specific asymptotic behavior far>0 sufficiently small. Throughout the rest of this sectiap,
will denote a topological solution af3.19.

The following lemma will be very useful when we prove Lemma 3.5.

Lemma 3.4: Letv>0. There is a constant EC({p;},{n;}) >0 such that

(e« - 1)%dx< C.
RZ

Proof: Let v, j(X) =U,(X) —2n; In|x—apj| for x e R?andj=1,... m. Then, we claim that

m
f , (6% — 1)2dx= 47>, (nj2 +anp; - Vo, (ap)). (3.20
R =1

Indeed,(3.20) follows from the Pohozaev identity. Choose a small constanD such thate
<(1/2)inf{|ap;—ap|j #k}. Multiplying both sides 0f(3.19 by x-Vu, and integrating on the
domainR*\U;B.(ap;), we obtain

a 1 _ 1 _
> e {—(X- Vu)((x—ap;) - Vua)-Z(X-(X-aloj))lvch2 do
X—szj =g

j=1 €
_ 1 _
= J (€ — 1)2dx+ — >, (x- (X~ ap;)) ("=~ 1)do. (3.21)
RZ\UjBS(apj) 2 j=1 \X—apj\=s

Sinceu,(X)=v,j(X) +2n; In|x—ap;| for each k=j=<m, it is easily checked that fdx—ap;|=¢

1 _ — 1 —
Z(x- VU)((X - apy) - VT,) = —(x- (x— ap)|VU,[?
€ 2¢

2n  2n, _ 2n?
=—L+—lap;- Vo, (ap)+—Fap;- (x—ap) +O(1) as &— 0" (3.22
€ &€
Then(3.20) is an immediate consequence(8f21) and(3.22).
Let w,(X) =u,(x) —Z[1;2n; In|x—apj|. We note that

_ 1 X=y — —
VW, (x) = — —yze”a(y)(e”a(y) -1)dy for xe R
27 )2 [x -yl

If [x|<1, then we obtain that

eﬁa(y) ( 1 — eia(y)) d y

eia(y)(l — eUa(y))dy+ f
yi=2 [X=Yl

27| VW, (X)| < f

ly|<2 Xyl

1 2 — —
< f dy+ f —gla¥)(1 —e"¥)dy< C (3.23
ly|<2 |X - y| ly[=2 |y|

for some constan€ depending o2, n;. We also note that
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_ 2n(p; - _
Vuga,(ap) =2 ﬂ]—p? + VW, (ap) for j=1,...m.
k#j a|pj - pdl
Then, Lemma 3.4 immediately follows fro3.20) and(3.23). O

Before we proceed, we fix some notations. ot R, we let

m m
X = upil? 4n,
f,0=2n, In(—’— , x=> :
WO = eI g2 9T S X ap P2

Let ¢ be the uniqudradial) topological solution of

m

Ap=e(e?-1)+ 47r(2 nj> S0 N RZ
j=1

Then, it is easily checked thaf,—f, € H3(R?) and ¢-f, e H*(R?). The following lemma shows
the asymptotic behavior af, for o> 0 sufficiently small.
Lemma 3.5: Fora > 0 sufficiently smallu, can be decomposed as

u,=f,~fo+p+z, z,eH(R?, (3.29

where|z,/lh22=O(a) as a— 0*.

Proof: The proof of Lemma 3.5 is similar to that of Lemma 3.2, and we just sketch the proof.
Let v,=u,—f, for simplicity.

Step L, — ¢—foin C2(R?) asa—0".

Indeed, since'~< 1, it follows from Harnack’s inequalitysee, e.g., Ref.)%hat eithedv ,} is
bounded inCl%C(Rz) or v,— —c0 uniformly on any compact subset as-0*. By Lemma 3.4, we
conclude thafv,} is bounded inC,%C(RZ). Then, the standard diagonal process, Lemma 3.4, and
the uniqueness of a radial topological solution imply that> ¢—fg in Cﬁ)C(RZ) asa— 0"

Step 2:5upy=1[Uy(X) — $(X)| — 0 asa—0".

Indeed, we note that i&>0 is sufficiently small

If (%) = fo(X)| < Ca(1+[x))"® for |x=1.

Consequently, it follows from Step 1 that sup|u,(x) - ¢(x)| — 0 asa— 0*. Moreover, the maxi-

mum principle implies that inf-1u, is bounded below by a fixed constant fer>0 sufficiently

small. Therefore, Step 2 follows from Lemma 3.4 and the argument in the proof of Lemma 3.2.
Step 1 and Step 2 imply tht,— (¢~ fo)||=r2— 0 asa— 0*. Since

|ef® — glo| +|g (x) = go(¥)| < Ca(1 +|x))2 for xe R?, (3.29
it follows that
(A -e?(2e? - 1) (v, = (¢ = fo)| < Cllv, = (¢ = fo) P+ (L +|x]) 7).

Consequently, Lemma 2.3 implies that

[ve = (¢ = fo)llhzrz) < Car

for a>0 sufficiently small. Lemma 3.5 is proved. O
We are now in a position to prove Theorem 1.2.
Proof of Theorem 1.2:Fix a small constantu,>0 and define a mappind: H2(R?)

X (=po, mo) — LA(R?) by
P, ) = Ay — el o™ (elulo* @ — 1) + ef(e? - 1) - g, + go.

Then, it is easily checked tha8.19 admits a solutioru,, of the form (3.24 if and only if
P(z,,1)=0.
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Lemma 2.3 implies thaD,P(0,0) is an isomorphism fronH%(R?) onto L%(R?). Since
P(0,0=0, it follows from the implicit function theorem that there is a positive consfant
< g such that for each g <u<u, the mappingP(-,x) admits a unique zere=v(u) in
H?(R?). In other words, ifa>0 is sufficiently small then Eq(3.19 admits a unique solution
which takes the forn(3.24) with |z,/2r2 —0 asa— 0".

The proof of Theorem 1.2 is complete. O

IV. UNIQUENESS RESULT FOR COMPACT DOMAINS

In the previous section, we obtainedpriori estimates for the topological solutian for e
>0 sufficiently small by dividingR? into two disjoint setsq=U;By(p;) and Qg. Actually, by
making use of the topological boundary conditi@y?), we have proved that, is bounded below
on QS, which is the first step for the proof of Lemma 3.1 and Lemma 3.2.

In this section, we consider a general situation (@rl), and study(2.1) on a compact
Riemannian 2-manifold(2, y) without boundary

m

1
AOU = e—zeus(eue — 1) + 47721 nj 5pj in Q, (41)
i=

where A, is the Laplace—Beltrami operator ¢, y). In this case, every solution @¢#.1) is not
bounded below on a compact subkeof Q\{p;, ... ,p,} because we do not have the topological
boundary condition2.2) anymore. Indeed, it has been proved by Dietgal.14 that for e>0
sufficiently small(4.1) admits at least two solutions. ; andu, , such that

@ u,—0ae. ax—0" (type );
(b) u.,—-»a.e. ass—0".

In what follows, we will callu, a type-I solution ifu, satisfieq4.1) and the above-mentioned
asymptotic behavio(a).
Let G(x,y) be the Green function which satisfies

1
AG(X,Y) =6, - @ Q

f G(x,y)dV4(x) = 0.
Q

Then, it follows from the arguments in Refs. 29 and 14 thais a type-| solution o{4.1) if and
only if u.—2; 4mn;G(x,p;) is bounded below by a constant fer-0 sufficiently small.

We limit our attention to the type-l solutions, and establish a uniqueness resut>for
sufficiently small. More precisely, we have

Theorem 4.1:Fix any constant €<inf,_q(-2; 47;G(x,p;)). Then, there is a constarnt
>0 such that for eachO<e<e (4.1) admits a unique solution uwhich satisfies uy
-2 4m;G(x,p;) =C..

Remark: The constante. in Theorem 4.1 depends o@-, {p;}, {n;} and the Riemannian
manifold (2, ).

Theorem 1.3 is a direct consequence of Theorem 4.1. We can prove Theorem 4.1 by making
use of the argument used in Sec. Ill. Indeed, every crucial estimate in the previous section is
essentially local. We will choose a suitable atl{a!sl,,nm)}}(:l on ), and repeat the proof of
Theorem 1.1 on each local chatd,, ¢)).

Theorem 4.1 will be proved in several steps, and we will just present the outline of the proof.
To this end, we choose an at#J;, %)}, on Q with the property that

(i) For 1<I<k, x(U,) is an open neighborhood of the origin i?. Moreover, p; e U; and
Xj(p;)=0 for each kj<m.
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(i)  Forl=<l=k, (U},x) is an isothermal coordinate, and there is a smooth fundisach that
&(0)=0, V£(0)=0 andds’=ef™|dx? on (U, ).

(i) For 1<j=m, there is a constant 9d<1/2 such that{x e R¥x/=<2d}Cx(U; and
[V&ll=(x<20)< 1. Moreover, we assume thijl({|x| <2d})NU,=3 for | #]j.

In what follows, we let
Vg= UL ({x e R¥|x| < d}.

We first present the following lemma similar to Lemma 3.1.
Lemma 4.1: Fore>0 sufficiently small, there are constantsd>0 such that

||u6||H2(Vg) = Ce_df.

Proof: On each(U;,x)), Eq.(4.1) can be written as

1
Au, = e—zegle”f(e“f— 1), |x|#0,

where A=+ 5 stands for a Laplacian ift?. Then, the proof is similar to that of Lemma 3.1
(Steps 2, 3 We skip the details. O

We now investigate the asymptotic behaviorupnear eachp; € ). For each kj<m (4.1
may be written as

1
Au= zegje”(e” — 1)+ 41,8, for X <2d. (4.2)
For each kj<m, let %,-(x)=§j(ex) for [x| <2d/e, and
. Eiedi(2eh — <
ije(x):{ele i(2e%i—-1), |x|<2dle,

e?i(2e?i-1), |x > 2dle.

The following corollary is the direct consequence of Lemma 2.3.
Corollary 4.1: For 1<j<m, there are constants>e 0 and €; >0 such that

(A = f; JvllLzrz) = dlvlluzre)

for all v e H(R?) and 0< e< €. Therefore A-f; . is an isomorphism from R?) onto L%(R?)
for 0<e<e.

For each Ejs=mand 0<e<g, let fpjyee H?(R?) be the unique solution of
A-Td¥e=gi in R? (4.3
whereg; . e L%R?) is defined by

eéi—1e¢ie¢i—1, x| < 2d/
g 0= - D1, (= 20re
0, [x|>2dle.

Let

aj(€) =g, dl2x -

Since§;(0)=0 andV¢;(0)=0, it follows thataj(e)$Ce2 forall 1sj<sm.
Lemma 4.2: There are positive constantseg;,and ¢ such that for0<e<e;

|i,40| = Cay(e™,  x  R2. (4.
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Proof: Corollary 4.1 implies thaﬂ;ﬁj’EHLmsC||1Apjye||Hz(Rz)sCaj(e). Choose two constani’,
and 0<cy<1 such thaﬁjye(x)>2c§ for |x =R,. Consider a comparison function

o(X) = Coaj(e)e_co‘)d, x e R2.

Since|¢;(x)| <Ce™ for x e R?, there are constan®> R, and €;>0 such that

(A—%j,e)(;bj,e— ¢)>0 for |x]>R and 0<e<e.

Fix a constanC,>0 such thatfpj,e—qo<0 for |x|=R. Then, the weak maximum principle implies
that fpjles ¢ for x| >R.

Similarly, we can choose positive constaRsand C; such that::bj'5>—C1aj(e)e_CO‘X| for |x|
>Ry and 0<e<e. (]

Let u,; be a solution 0{4.2) such that sup-,q|uj(x)| —0 ase—0". Let 0 ;(x) =u,j(ex) for
[x|<2d/e.

Lemma 4.3: Fore>0 sufficiently small, there are constantsc>0 such that

[0 = o = ':’/j,e||H2(\x|sd/e) < C(e ¥+ éaje)). (4.5

Proof: It follows from the Pohozaev identity and the gradient estinjaeanma A that

1 1
& (1 +2(x-V Sj))efj(e“ei - 1?dx=4mn{ + o(e™)
€ [x|<2d 2

for some constant>0. Since|x: V & =(x<2q =<1, it follows that

f efi(elei - 1)%dx =< C. (4.6
[x|<2d/e

Step 1:We claim sup<oq/dUej(x) - ¢;(x)| — 0 ase—0".

Indeed, it follows from the argument in Lemma 3&tep ) and (4.6) that 0.;—¢;—0 in
C,%C(RZ). For the sake of simplicity, we let, ;=0 ;- ¢;. Suppose that there are sequeregsand
{x,} such thate,— 0, |x,| <2d/e,, and

|Wen,j (Xn)| = sup |Wen,j(x)| =%
X|=2d/e,

for some constang,> 0. It is easy to check that,| — o ande,|x,| — 0. Since%j(xn):o(l), we can
follow the argument in Lemma 3(5tep 3 and conclude thaﬁlenvj(xn) — —oo, Then it follows from
the Harnack inequality th@en,j — —oo uniformly on Bg(x,) for any constanR>0, which contra-
dicts (4.6). Therefore, our claim is proved.

Step 2:We now prove(4.5). Making use of the inequality @ e'-1-t<t2 te R, we can
verify that

(A=F,0(0ej - .0 =0 > for |x < 2dle. (4.7)

Consider a cutoff functionr e C;(R?) such that B<o<1, o=1 for |x|]<d, and ¢=0 for |x|
=2d. Let 0 (X)=0(ex). Then, we obtain

(A - ’fj,s)(o-s(we,j - l’\pj,e)) = Ue((A - %s,j)(ws,j - :pj,e)) + [A!Ue]we,j - [A!Ue] ;ps,j!
where[A, o Jf=fAc +2V o, V. Corollary 4.1 and4.7) imply that
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LA R - A2
lodWej = Illnzme) < CUI[A, o W jllL2m2) + LA, ot lL2rz) + ||¢’j,e|||_4(R2))

+ ClW + ¢ dl=lloeWe j = 4 DllLzrz)- (4.8

Moreover, it follows from elliptic estimates that

IV 5. dli(cre=ix=2aie) < CEe.

Then(4.5 is an immediate consequence(df4) and(4.8), and Lemma 4.1. O
Recall thatg; is the(unique radial solution 0f2.5). Let o e C{(R?) be a cutoff function such
that 0< o<1, 0=1 onBy(0), ando=0 onB3,(0). Let ¢; (X)=¢; (x/€) and qS;E(x) = ¢;(x/ €) for
x e R2.
For each Ej<m, we let

g=ooX, ¢ =do% and P =0

Then, Lemma 4.1 and Lemma 4.3 imply that

Proposition 4.1: Let ybe a type-I solution of4.1). For e>0 sufficiently smallu, is decom-
posed as

m
uszzgj((ﬁj,e-'- dlj,e)+€5/205 (49)
=1
for somev, e H(Q) such thatfv J|2)=0(1) as e—0".
In what follows, we prove that4.1) admits a unique solution of the fori@.9) if €e>0 is
sufficiently small.
Construction of a contraction mapping
DefineF_:H2(Q) —L2(Q) by

1 m L o m _ o
Fv)=Aq - €T/29Xp e+ oi(dj e+ l/fj,e)] (expl e+ oj(dj  + iﬁj,J] - 1)
j=1 j=1
14— — 1l — 1l . — —
+ ?/22 (080 pj e — 476, ) + ?22 Tidot; e+ ?/22 [A0,01(j e+ 8.0,
€ %=1 PoeTm €1

where[Aq, 0j]f=fAq0i+2V f- Vo Itis easily checked tha#.1) admits a solution, of the form
(4.9 if and only if F(v,)=0.

We have the following lemma similar to Lemma 3.3.

Lemma 4.4: There is a constaat> 0 such that if0<e< ¢, then we have

@)  [F0) 2 =C(e " max<jma;(€) +& <) for some constants €>0.
(b) DF/0) is an isomophism from #Q) onto L?(Q)), and there is a constant €0 such that

[DF (O] 20y = Cllh[[2q)  forall h e HAQ). (4.10
(©) [DF{2h-DFO)h| 20 <Ce"Ahlzq) for |2z =1.
Proof: The proof of Lemma 4.4 is similar to that of Lemma 3.3, and we sketch it in brief.

Lemma 4.2 implies that there are some const@nts>0 such thatF (0)|<Ce %< on V5. For
each kj=m, it follows that on each local coordinate chatt;,x;)
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1 . . 1 . 1 - .
F.(0)=- Tze%,é*'lﬂj,e(e(ﬁj,;‘ﬁj,e -1+ Tze‘§je¢j,f(e¢j,e -1+ Tze¢j,f(2e¢j,e— 1)¢j,e
€ € €

1 b b 1
+ ET/z(l —et)edicetie—1) = ET/zo(l)Wj,eF for |x=<d.
Sincea;(e) < Ce?, we obtain

oS 112 _
||Fe(0)||L2(xj*1(Bd(0))) = Ce "AYj ity o) = Ce *%e(e).

Therefore(a) is proved. In particulaf|F (0)[| 20, =0(€"?) ase— 0".

Making use of(4.4) and the argument in the proof of Lemma 3.3, we can also pfloyvand
(c). We skip the details. See Refs. 1, 2, 4, 21, and 26. O

We are now in a position to prove Theorem 4.1.

Proof of Theorem 4.1iet B={v e H(Q)|||v|nzq) =<1}, and define a mapping.:HA(Q)
—H2(Q) by

P (v) =v - [DF(0)]'F(v).

It is easily checked tha#.1) admits a solution, of the form(4.9) if and only if v, e H3(Q) is a
fixed point of ®..
It follows from Lemma 4.4 thatb, is a well-defined contraction mapping froBhinto B if

€>0 is sufficiently small. Therefore, i€> 0 is sufficiently small therb, admits a unique fixed
point in 5.

On the other hand, Proposition 4.1 implies thadefined in(4.9) is a fixed point of®,, and
moreoverp, e B if e>0 is sufficiently small. Therefore,, in (4.9) is the unique fixed point ob,
for e>0 sufficiently small.

The proof of Theorem 1.3 is complete. O
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The teleparallel coframe gravity may be viewed as a generalization of the standard
GR. A coframe(a field of four independent 1-formg considered, in this approach,

to be a basic dynamical variable. The metric tensor is treated as a secondary
structure. The general Lagrangian, quadratic in the first order derivatives of the
coframe field is not unique. It involves three dimensionless free parameters. We
consider a weak field approximation of the general coframe teleparallel model. In
the linear approximation, the field variable, the coframe, is covariantly reduced to
the superposition of the symmetric and antisymmetric field. We require this reduc-
tion to be preserved on the levels of the Lagrangian, of the field equations, and of
the conserved currents. This occurs if and only if the pure Yang—Mills-type term is
removed from the Lagrangian. The absence of this term is known to be necessary
and sufficient for the existence of the vialglechwarzschily spherical-symmetric
solution. Moreover, the same condition guarantees the absence of ghosts and ta-
chyons in particle content of the theory. The condition above is shown recently to
be necessary for a well-defined Hamiltonian formulation of the model. Here we
derive the same condition in the Lagrangian formulation by means of the weak field
reduction. ©2005 American Institute of PhysicfDOI: 10.1063/1.1819523

I. INTRODUCTION

Einstein’s general relativityGR) is very successful in describing the long distaifcecro-
scopig gravity phenomena. This theory, however, encounters serious difficulties on microscopic
distances. So far essential problems appear in all attempts to quantize the standévdré¢ent
review, see, e.g., Ref.)1Also, the Lagrangian structure of GR differs, in principle, from the
ordinary microscopic gauge theories. In particular, a covariant conserved energy-momentum ten-
sor for the gravitational field cannot be constructed in the framework of GR. Consequently, the
study of alternative models of gravity is justified from the physical as well as from the mathemati-
cal point of view. Even in the case when GR is unique true theory of gravity, consideration of
close alternative models can shed light on the properties of GR itself.

Among various alternative constructions, the Poincaré gauge theory of gravity, see Refs. 2-11,
is of a special interest. This theory proposes a natural bridge between gauge and geometrical
theories. Moreover, it has a straightforward generalization to the metric-affine theory of éravity,
which involves a wide spectra of space—time geometries. However, it was elucidated recently that
even the restriction of the Poincaré gauge theory to the teleparallel model provides a reasonable
alternative to GR.

¥Electronic mail: itin@math.huiji.ac.il

0022-2488/2005/46(1)/012501/14/$22.50 46, 012501-1 © 2005 American Institute of Physics
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A. Coframe (teleparallel ) gravity—basic facts and notations

We start with a brief account of the cofrartteleparallel model of gravity and establish the
notations used in this paper. Details, different approaches, and additional references can be found
in Refs. 12-28.

Let a four-dimensional4D) differential manifold M be endowed with two smooth fields: a
frame fielde, and a coframe field?. In a local coordinate chart,

e = (x) dlax*, 92=95()dx*, a,u=0,1,2,3. (1.2

These fields allow to compare two vectqreore generally, two tensorsttached to different
points of the manifold. It is referred to as ttedeparallel structureon M. The two basic fields are
assumed to fulfill the dual reIatioreaJﬁb:ég. We denote by| the interior product operator
XX AP— AP that, for an arbitrary vector fieldke X and a p-form field we AP, Xjw:
=w(X, ...). So only one of the fieldsg, or 92, is independent. Thus, two alternatigeut, prin-
ciple, equivalentrepresentations of the teleparallel geometry are possible.

Theframe representatiois based on a complei\1,e,} and applies the tensorial calculus as
the main mathematical tool similar to the Einstein tensorial representation of GR.

The coframe representatigrwhich deals with a complegM , 92}, applies the exterior form
technique. In the present paper, we use this approach and callciofiteene gravityin contrast to
the metric gravity of GR.

In a wider context, the coframe field appears as one of the basic dynamical variables in the
Poincaré gauge gravity and in the metric-affine gravity. To extract the pure coframe sector, in these
theories, one must require vanishing of the curvature. Here, we treat the coframe field as a
self-consistent dynamical variable with its own covariant operators: wedge product, Hodge map
and exterior derivative. These two approactm with a trivial connection and the other without
explicit exhibition of a connectionare principally equivalent.

The indices in(1.1) are basically different. The greek indices refer to the coordinate space and
describe the behavior of tensors under the group of diffeomorphisms of the manifol@ihe
italic indices denote different 1-forms of the coframe. The corresponding group of transforma-
tions, SQ1,3), comes together with its natural invarianf,=diag’1,-1,-1,-1.

The metric tensor ooV is expressed via the coframe as

9= 792 ® 0°, (1.2

i.e., the coframe is postulated to be pseudo-orthonormal. The coframe field and all the objects
constructed from it are assumed to be glabiglid) covariant. In other words, all the constructions
are required to be covariant under the global transformatibihs A% 9° with a constant matrix
A% e SQ(1,3). The metric tenso(1.2) is invariant under a wider group of transformation: local
(pointwise transformations of the coframe withfy, =A% (x).

Consider a Lagrangian density, which (i3 diffeomorphism invariant(ii) invariant under
global S@Q1, 3) transformations of the coframe, ai) quadratic in the exterior derivatives of the
coframe. The most general Lagrangian of this form is a linear combinatfSn,

1 3
L= 52 oL, (1.3
i=1

wherepq, ps, p3 are free dimensionless parameters. The linear independent 4-forms appearing here
are expressed via the cofrarfield strength C2: =d9?,

e =cao* ¢, (1.4)

@ =(Cc,09) 0% (C, 09, (1.5
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Cr=(Cc,09) 0% (C, 0. (1.6)

The Hodge dual operator * is defined by the pseudo-orthonormal cofiénog, equivalently, by
the metric(1.2). One may try to include in the Lagrangian some invariant expressions of the
second orde(similarly to the Hilbert—Einstein LagrangiarSuch terms, however, are reduced to
total derivatives and do not affect the field equations and the Noether conserved currgmt8) So
is the most general Lagrangian that generates the field equations of the second order.

Let us introduce the notion of thigeld strength

F =W, @pa, (g (1.7
with

WFe: = (py + pa)C3, (1.9

@ Fe: = p, e | (9" OCyy), (1.9

@7 = pa* O( e | CM). (1.19

Such separation of the strengfft involves two scalar-valued form8™0C,, ande,, | C™. So some
calculations are simplified. For irreducible decomposition78f see Refs. 5 and 23.

In the notationg1.8—(1.10), the coframe Lagrangiafl.3) takes a form similar to the Max-
well Lagrangian,

L=3C30* F,. (1.11

The free variation of1.1]) relative to the coframé® must take into account also the variation of
the Hor?%e dual operator, which implicitly depends on the coframe. It yields the field equation of
the for

d* Fa=T8, (1.12

where the 3-forn7? is the energy-momentum current of the coframe field

T.=(e,]Cp O* F"= e,] L. (1.13

The conservation law for this 3-formZg=0 is a straightforward consequence(fl2).

B. Viable models—a problem of physical motivation
A general quadratic coframe model, which is global($@) invariant, involves three param-
eters,
p1,  p2 p3—free. (1.149
The ordinary GR is extracted from this family by requiring of tbeal SO(1, 3) invariance, which
is realized by the following restrictions of the parameters:
p1=0, Zpy+p3=0. (1.19
The analysis of exact solutiofi¢o the field equatioll.12) shows that the Schwarzschild solution
appears even for a wider set of parameteriable se},
p1=0, py p3—free. (1.16

Moreover, forp,# 0, spherical-symmetric static solutions {b.12) do not have the Newtonian
behavior at infinity"®
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So a problem arised&Vhich physical motivated requirement extracts the viable set of param-
eters?

The quantum-theory solution to this problem is known for a long time. In Refs. 29-33 it was
shown that the requiremerl.16) is necessary and sufficient for the absence of ghosts and
tachyons in particle content of the theory. Another motivation(1ot6 comes from the require-
ment that the theory must have a well-defined Hamiltonian formulgtRet. 34).

In this paper we look for a motivation @¢l.16) on a classical Lagrangian level. We deal with
linear approximation of the general coframe model. The coframe variable can be treated, in this
approximation, as a regulard4 matrix. Consequently, it reduced to a composition of two inde-
pendent variables: the symmetric and the antisymmetric fields.

Our main result is as follows: Only fal.16), the coframe model is reduced to two indepen-
dent models, every one with its own Lagrangian, field equation, and conserved current. In other
words, the viable model is exactly this one that approachefdbefield limit i.e., any interaction
between the approximately independent fields appears only in higher orders.

Linear approximation of coframe models was usually applied for studying the deviation of
teleparallel gravity from the standard GR, and for comparison with the observation data, see Refs.
3, 4, 30, and 31. In our approach the reduction of the lower order terms is used as a theoretical
device. We show that this condition is enough to distinguish the set of viable models. The relation
between these two approaches requires a further consideration.

Il. WEAK FIELD REDUCTION
A. Linear approximations

To study the approximate solutions (b.12), we start with a trivial exact solution, laolo-
nomic coframefor which,

do2=0. (2.1

ConsequentlyF2=C2=0, so both sides of E¢1.12) vanish. By Poincaré’s lemma, the solution of
(2.1) can be locally expressed @8=dx?(x), whereX?(x) is a set of four smooth functions defined

in some neighborhood of a pointx e M. The functionsx®(x), being treated as the components

of a coordinate mag?®:U— R* generate a local coordinate systemlriThe metric tensof1.2)
reduces, in this coordinate chart, to the flat Minkowskian mejriay,,0x2® dx®. Thus the holo-
nomic coframe plays, in the teleparallel background, the same role as the Minkowskian metric in
the (pseudoyRiemannian geometry. Moreover, a manifold endowed witpseudoyorthonormal
holonomic coframe is flat. The weak perturbations of the basic soldiferdx? are

93 = dx®+ hd = (&8 + h?,)dxP. (2.2)
“Weak” means
%)= e=0(1), 0% [ =0(e), [Ih%cdl = Ole), 2.3
where||---|| denotes the maximal tensor norm. We accept that the cofiéhaand the holonomic

coframe &? have the same physical dimensionleingth. Thus, the components of the math%,
and the parametet are dimensionless. Consequently, the approximation condi(i2:3 are
invariant under rescaling of the coordinates.

In this paper we will take into account only the first order approximation in the perturbations
h?%, and in their derivativesi.e., in the parametet). Note that, in this approximation, the differ-
ence between coframe and coordinate indices completely disappears. This justifies our choice, in
(2.2) and in the sequel, of the same notation for th@mesically different indices.

In accordance witli2.3), only weak coordinate transformations are considered. Under a shift

X2 X2+ £3(x), (2.9

the components of the coframe are transformed as
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hab'_> hab_ga‘b' (25)

Thus, in order to preserve the weakness of the fluctuation, it is necessary to require
£,=0(|h%). We will use the termapproximately covariarit for the expressions which are
covariant only to the first order of the perturbations. Observe that this assumption restricts only the
amplitudes of the perturbations and of their derivatives. It does not restrict, however, the local
freedom to transform the coordinates. An appropriative coordinate system can still be chosen in a
small neighborhood of the identity transformation in order to simplify{beal) field equations.

Similarly, in order to be in agreement with the approximation conditi@r8), the global
SQ(1,3) transformations of the coframe field®— A% 9°, must also be restricted. It is enough to
require the transformations to be in a small neighborhood of the identity

Ay =&+ ap, lag|=0(D). (2.6)

B. Reduction of the field
In (2.2, h%, is a perturbation of the flat coframe. Thus we have the following.

(i)  To the first order, the holonomic coframe is expressed by the unholonomic one as

dx@= (82— h?,) 0P (2.7

(i)  The indices inh%, can be lowered and raised by the Minkowskian metric,

Nap: = D™, D22 = 7P™2 (2.9
The first operation is exagtovariant to all orders of approximationsvhile the second is
covariant only to the first order, whegi®~ 2°.
(i)  The symmetric and the antisymmetric combinations of the perturbations,
Oat = Nay = 3(Nap+ M) aNd Wy = Mgy = 5(hap = i) (2.9

as well as the tracé: =h™ =¢"_ are covariant to the first order.
(iv) The components of the metric tensor, in the linear approximation, involve only the sym-
metric combination of the coframe perturbations,
Oab= Tab*+ 203 (2.10
(v)  Under the transformation®.4), two covariant pieces of the fluctuation change as

Oan— Oap— g(a,b) and Wap > Wap ~ g[a,b]- (2-11)

Thus the approximately covariant irreducible decomposition of the dynamical variable

hab: eab+Wab (2-12)

is obtained. Thus, instead of one fidlgl, we have, in this approximation, two independent fields:
a symmetric fieldd,, and an antisymmetric field,y,

C. Gauge conditions

The actual values of the components of the fiefiys and w,, depend on a choice of a
coordinate system. Thus four arbitrary relations between the compaepial to the number of
coordinatesmay be imposed. We require these relations to be Lorentz invariant, i.e., covariant in
the first order approximation. Thus the most general form of constréjaisge conditionsthat
involve the first order derivatives is
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0™+ BO 4+ MW" =0, (2.13

wherea, B,y are dimensionless parameters.
Certainly, for some special values of the parameters, these conditions cannot be realized.
Indeed, under the coordinate transformati@g), Eq. (2.13 changes, in the lowest order, to

‘)‘Fbam’m + ﬁ’b,a + anm’m = (af(a,m) + ﬁgm,a + Yf[a,m])'m- (2.14

Thus the condition$2.13) can be realized, by the coordinate transformati@é), if and only if
the system of PDE2.14) has a solutioré(x) for a given left-hand sidéLHS).
Let us check the integrability of this system. Equat{@ril4) results in

(af(a,m),b + ,Bgm,a,b + yé[a,m],b)'m = aaamb’m + Ba,a,b + ’W’Vamb'm' (2-15)
Commuting the indices andb, we obtain

(a+7y) O &ap = 2A@bap) = Wigap) - (2.16

Thus, the gauge conditiof2.13) with a=-y+# 0 cannot be realized by any change of the coordi-
nate system. Now, take the trace(@f15),

(a+ P OE=ab,,™"+ B0 6. (2.17)

Thus a=-B+0 is also forbidden.
We will apply, in the sequel, two separate gauge conditions: for the symmetric field

O™~ 36,=0, (2.18
and for the antisymmetric field
W, = 0. (2.19

Observe, that2.18 and(2.19 cannot be realized simultaneously by the same coordinate trans-
formation. Indeed, for this, the coordinate functions must satisfy

0&=20,"- 0, and O&— (™ a=Wam (2.20
The integrability conditions for these equations yield

u g[a,b] = 20n{a,b]'m == Wm[a,b]’m' (2.21)

For arbitrary independent field%,, andw,,, these conditions are not satisfied.
Certainly, the condition&2.18 and(2.19) can be realized, separately, by transformation of the
coordinates.

D. Reduction of the field strengths
By (2.3), let us decompose the field strengttisB—«(1.10). The 2-formC, is approximated by
Ca = Nape AXC T AX" = = hyppy 9° D99 = = (Gappy ] + Wapp,) 9° 0 9°. (2.22
Consequently, the first part of the field strengihB), takes the form
M Fa == (p1+ pa) (Oapp o) + Wagp,c) 9° 0 0°. (2.23
As for the second paxtl.9), it involves only the antisymmetric field,
@ F, = = 30 Wapq 9° 0 9°. (2.24)
The third part(1.10, takes the form
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B F, = pamacdng™ = hp) 9° 09° = pgac o™ = 0 — Wy ™9 0 0°. (2.25

Therefore, the field strength is reduced to the sum of two independent strengths—one defined by
the symmetric fieldd,, and the second one defined by the antisymmetric figlg

F o O Win) =™ F o (6 + 2™ F o(Wi) (2.26
where
M F = ~[(p1+ p3) Oain.c) + P37l O ™ — PaTtagp 6, ] 9° 0 9° (2.27
and
@0 F. = = [(py+ pa)Wab,c] + 302 Wiane] ~ P377ab W ™19 0 9°. (2.29

Hence, for arbitrary values of the parametgysthe field strengths are independent.

E. Reduction of the field equations

The field equatioril.12) includes the second order derivatives of the perturbations on its LHS
and the squares of the first order derivatives on both sides. In the linear approxiia8opnhe
quadratic terms can be neglected. Thisl2) is approximated by

d* 7#=0. (2.29
The covector valued 2-formF, can be expressed in the unholonomic basis as
Fa=Fapc®® 09/ 2. Accordingly, we derive
d* F2= JFapem AX" O * (9° 009 = = 5F 0™ * [ €] (97 009 | = 3F o * 0"

Consequently, Eq2.29 reads

Fabg©=0. (2.30

Applying the antisymmetrization of the corresponding indices to the expre€2ip§ we derive
the linearized field equation

(pr+ pa) (O 6, - 9am,b’m) +p3(= a0 6- emb,m,a + g,a,b + 77ab‘9mn’m,n)
+ (pl + 2p2 + p3)(DWab - Wam,b’m) + (2P2 + p3)Wbm,a’m =0. (231)

Proposition 1: For the case;=0, the linearized coframe field equation (2.31), in arbitrary
coordinates, splits into two independent systems

M ity (On) =0 ANd O™ E gy (W) = 0.

If p1#0, Eq. (2.31) does not split in any coordinate system

Proof: The equatior{2.31) is tensorial to the first order. Thus, by applying symmetrization and
antisymmetrization operations, it is reduced covariantly to a system of two independent tensorial
(to the first order equations. The symmetrization yields a system of 10 independent equations,

O[(p1+ p3) Oan = pananf] = (p1+ 203) Oy ™ + P3(0ap* Mavbmn ) + P1Winap)" = O-
(2.32)

The antisymmetrization yields a system of six independent equations,
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(p1+ 205+ p3) O Wap+ (p1 + 4p2 + 209 Wiia b — P10njap = 0. (2.33

Evidently, the conditiorp; =0 removes the “mixed terms” and yields the separation of the system.
Such splitting holds in arbitrary system of coordinates.

Suppose now, # 0. Thus, the “mixed terms” remain in both equations—thterm in(2.32
and the 6 term in (2.33. Let us try to remove these terms by an appropriative choice of a
coordinate system. For this we must require the equations

Gm[a,b]’m =0 and Wm(a'b)’m =0

to hold simultaneously. These equations can be satisfied only if

Ona"=0 and w,,;"=0. (2.34

The actual values of the variablég, andw,, depend on a choice of a coordinate system. Recall
that the approximation condition8.3) do not restrict the freedom to choose the local coordinate
transformations. Therefore, kR.4), four additional conditiongequal to the number of coordi-
nates, can still be applied to the perturbations in order to sat{&34). We need, however, to
eliminate eight independent expressions,™ andé,,,™. This cannot be done by four independent
functions of the coordinates. Indeed, under the transformatiAy

ﬁma'mH ﬂma'm— g(m’a)’m, (2.35)

,m

Wma Wma’m - g[m,a]’m' (2.36
Hence the coordinate transformations must satisfy

,m m

Ona" and  &ma" = Wing' (2.37)

g(m,a)
simultaneously. Therefore,
Ema = hpa (2.38
The consistency condition fgR.38) is

,m _ ,m
hmza,b _hmb,a ’

which it is not satisfied in general. |
Consequently, fop;=0 and generic values of the parametgysps, the field equation of the
coframe field is reduced to two independent field equations for independent field variables.

(i)  The symmetric fieldd,, of 10 independent variables satisfies the system of 10 inde-
pendent equations,

E (O = psl O (Bab = ) = Orapy™ + O+ Db ™"1=0.  (2.39

We rewrite it as

(= 700 = (Bam™ = 362 5= (Bp™ = 300) a* Napbn ™" = 0. (2.40
Substituting here the conditiof2.18 and its consequence
O™ =201 6 (2.42)
we obtain
(6% - 377°6) = 0. (2.42
Equation(2.42) results infJ#=0. Then it is equivalent to



012501-9 Weak field reduction in teleparallel gravity J. Math. Phys. 46, 012501 (2005)

[6,,=0. (2.43

Consequently, in the coordinates associated \2th8), the symmetric field satisfied
the wave equation.
(i)  The antisymmetric system of six independent equations for six independent variables,

O (W) = (202 + p3) (Wap + 2Ws ™) = 0. (2.44

In the coordinates associated with 19 it is reduced to the wave equation,

Ow,,=0. (2.45

F. Reduction of the Lagrangian

In the sequel of this paper, we consider the models with paramgtd). Let us examine now
the reduction of the Lagrangigi.3).

Proposition 2: For p;=0, the Lagrangian of the coframe field is reduced, up to a total
derivative term, to the sum of two independent Lagrangians

L(BapWap) = ™ L(Ga) + @ L (Wyp). (2.46)

Proof: With p;=0 the term?£ does not appear in the Lagrangian. Calculate in the linear
approximation(we use the abbreviatiofi?® "= 9209°0- - -),

@L=(d9?09,) 0 * (dd, 09°) = hA™hy  Fnmall * 99P0, (2.47)
Applying the formula
ape D * 920 =652 & 55 1%1 (2.48
we derive
@£ = 2WAPS(Wapy ¢ + Wegp + Wica) * 1. (2.49

So?r depends only on the antisymmetric field. Consider now the linear approximation to the
()
term L,

BL = (d0, 00p) O * (dd° 097 =h,™h°) 0 * 92, (2.50
Use(2.49 to get

B L = [Ngpo(N®€ = h3P) —h, 2+ ¢3(2h, P - 6,)]* 1. (2.51)
Insert here the splitting2.12). It follows that the Lagrangiaf2.5)) is reduced to the sum

BrL=P9r)+%Lw +3L6w), (2.52
where
B L) =[ Oap (72— D) — 0,26+ 67(26,,° - 6.)]* 1, (2.53
LW = [Wap WA = WAP) =Wy ] *1, (254
B LOW) = 2~ Gap WP + 62,0 — 6,520 ]* 1. (2.55

Extracting the total derivatives in the mixed tefgh55 we obtain
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B L£(6,W) = (6,5(WAP —wPS) - ow, ;*P) * 1 + exact terms. (2.56)

The terms in the square brackets vanish identically as a product of symmetric and antisymmetric
tensors. Thus the mixed teﬁ’?lﬁ(e,w) is a total derivative. Consequently, desired reduction of the
Lagrangian is obtained. |

The Lagrangian of the symmetric fieiEYm)£=<3)/:(0) may be rewritten in a more compact
form. Observing the identity

0570 .= 0,,°6°° , + exact terms, (2.57)
and extracting the total derivatives, we obtain
M £ = 200l O o 72 = 26°°P) + 63(26,,° - 6.)]* 1. (2.58

This form of the Lagrangian is acceptable in arbitrary coordinates. In the coordinates associated
with the condition(2.18), the last parentheses {8.58) vanish. In the first parentheses, we extract

the total derivatives and ug2.18) to derive(symbol= used here for equality up to total deriva-
tives)

6ab,ceagb = (eabeac'b),c - abeac’b,c == % abe’a’b = % abea'a = %10,51061-
Consequently the symmetric field Lagrangi@53) is reduced to
YL = 2 k(o 6P = 50,607 * 1. (2.59

Analogously, for the Lagrangian of the antisymmetric fi@@£:(2)£+(3)£(w), we use the
identity

W, WP = Wy, WA + exact terms (2.60
and rewrite it, in an arbitrary system of coordinates, as
@M L = 3(2pp + pg)[Wap (WA = 20P°0) ] * 1, (2.61)
or, equivalently, as
»C(W) = %(ZPZ + pS) (Wab,c(Wab'C - Wac,b) - Wab’aVVCb,c) *1.
The gauge conditio2.19 removes the last term while the second term is rewritten as
Wab, Wac’b = = WabWaC'b‘c = 0.

Thus, the Lagrangian of the antisymmetric field is

L(W) = 5(2p5+ p3)Wap WPC* 1. (2.62

G. Reduction of the energy-momentum current

The Lagrangian of the coframe field is decomposed, in the first order approximation, to a sum
of two independent Lagrangians for two independent fields. The Noether current expression, being
derivable from the Lagrangian, must have the same splitting.

Proposition 3: The coframe energy-momentum current is reduced, on shell, in the first order
approximation, as

T Oy Wine) = ™ T () + " Ty (Wi, (2.63

up to a total derivative.
Proof. The coframe energy-momentum current is of the form
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To=(e,)C) O* F'— e, | L. (2.64)

Due to Proposition 2, the second term, in the first order approximation, does not contain the mixed
termsé@’ -w’. Hence, it already has the reduced form. To treat the first term, we write the strengths
in the component

Cin= Croy®° 09°,  F™=Fppqo° 099, (2.65

Thus, the first term of2.64) is approximated by

(€a]Cm) O * F"=CrpogFpqp( €a ] 99 0 * 9°9= 4C o™ * 9 = dhygg P ™0 * B,
(2.66)

The 3-form *3;, in the lowest order approximation, is an exact form. Thus, it is enough to show
that the scalar factor, on the right-hand sid@HS) of (2.66), has the desired splitting. This
expression is a sum of two terms. The first one is proportional to

— b . .
hmanF ™27 = = hy, F™PY |+ total derivatives,

i.e., itis, on shell, an exact form. Now we must show that the second term, which is proportional
to hmanFm[b“], does not involve the mixed products of a ty@ev. The mixed product expression
in the latter term is proportional to

emn,a(wmbn + 277n{n W b]k,k) + Wmn,a(emb'n + 77mb6nk,k - mee'n) - (2.67

By recollection of the terms, we rewrite this expression as

(OrnaW™" + 6, WP )+ (0 W™ = 0, W™ )+ (MW — P . (2.68)

The three brackets above are total derivatives, namely,

[(amnawmb)'n + (amn’nwbm),a] + [(awbm,m),a_ (W’bm,a),m] + [(‘qnbnwmn),a_ (0bm,awmn)'n]-

(2.69
Thus, (2.66) and, consequently2.64) do not involve the mixed terms. The desired splitting is
proved. |

The energy-momentum tensby° can be derived from the Noether curréitby applying the
relations

=T O Tap= &l* T (2.70
Proposition 4: For the fieldd,, in the coordinate system associated with the gauge condition
O™~ 36,=0, (2.70
the energy-momentum tensor is

Tap= %K[(emnaemn,b - leﬂabalm,nelm'n) - %(6,a‘9,b - %naba,ma'm)]- (2.72

This tensor is symmetric and traceless
Proof: We start with the energy-momentum current for the coframe field

T.=(elCpO* F" - e, | L.

Due to Proposition 3, in the first order approximation, this current is decomposed to two indepen-
dent currents. Thus we may assumg=0 in order to derive the expression fBz(6).
In the coordinates associated with the gauge condi2onl), by (2.59),
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€L = 3P3(Ornpt™P = 30,m0™ * D,
The first term of7, is derived from(2.64),

(€]Cm) 0% F™= 40,10 mF PV * 9 = 2(0nanF ™" * 9= GrnaF P * 9y).

Observe that, on shell, up to a total derivative

ama,nFm[bn] =- amaFm[bn],n =0.
Thus,

(€)Cp) O * FM= = 26,0F ™0V * 9.
Applying the gauge condition t2.26) we get

Fa==pdl Oatnc) + i (0 g™ = 0. ) 9°°= = p3(Oagi.c) = 3 7 0, ) 9.

Consequently,

(€)C) 0% FM=2p560na( ™M = 270 6 M) * 9,

Extracting the total derivatives

Ornal™" = O™ = 50,0™ =~ 20,,6°,

Orna ™0™ = Opy"600 ~ 560 260°,

it follows that

( eaJ Cm) O*F"= PS(_ 20mn,a‘9mn’b + e,ae'b) * Dy

Collecting the terms int@, and extracting the energy-momentum tenggr from the current7,
by T.,=6p]* 7T, we get the desired expression. It is clear that energy-momentum tensor is sym-
metric and traceless. |

In GR, the behavior of small perturbations of the metric tensor is managed by the wave
equation. Thus, for a wave propagating in the positive direction oktagis, only two indepen-
dent components of the matri, remain,

023:,&(7'), 022:_033=V(7'), where 7=t-x. (273)
The calculation of the energy-momentum tensor for the symmetric field by use of the (2risr
yields
Tap= k(ILL,aILL,b + V,aV,b)- (2.79
The energy flux reads

T01:_P3(-9§3+711(-922‘ 933)2)- (2.79

Observe that the expressio(®&74) and (2.75 are the same as the expressions obtained in GR
from the energy-momentum pseudotensors.

Let us turn now to the antisymmetric field.

Proposition 5: In the coordinate system associated with the gauge condition

w, =0, (2.76

the energy-momentum tensor of the antisymmetric field is
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Tap=— (2P2 + p3)(Wmn,ann,b - inabwmn,pwmnp)- (2.77

This tensor is traceless and symmetric
Proof: The current of the symmetric and of the antisymmetric fields are decoupled. Thus we
may assumel,,=0. In the coordinates associated with the gauge condi#or),

eaJ L= %(ZPZ + PS)Wab,cWab'C * Oy
As for the first term of7,(w) we derive from(2.66),
( eaJCm) o= «7:m: 4Wm[a,n]Fn{bn] * 'ﬂb = Z(Wma,nFn{bn] - Wmn,aFm[bn]) * 1(}b-
The first term vanishes, on shell, up to a total derivative,

WinanF MO =~ —w, F™P =0,

Thus,

(€] Cr) 0% FM= = 20 oF MO * 9,
Inserting the gauge conditioi2.76) into (2.26) we derive

Fa=- (PSWa[b,c] + 3P2W[ab,c]) 9P,

Hence,

(€] Co) 0% F™= 2(pgWig W™ + 3ppWipg ™) * 9.

Extract the total derivatives and use the gauge condition to get

mbn __ N b __
WinnaW™" = w W™ =0,

Winna*™™ =~ wi, WP, ~ 0.

Consequently,

(e ]Cr) O* FM==(2p,+ P3)Wmn,awmnb-

The desired expressiqR.77) is obtained now by collecting the terms. |

Ill. THE ROLE OF THE PARAMETERS p,

The casep;=0 is extracted in coframe models by existence of a unique spherical symmetric
static solution. Since the exact solution yields the Schwarzschild metric this condition generates a
viable subclass of gravity coframe models.

We have involved an independent criteria. Namely, we have shown that only in the case
p1=0 the weak perturbations of the coframe reduce to two independent fields with their own
Lagrangian dynamics. Consequently the models have a free field limit. This effect is correlated to
the recently obtained resuit concerning the Hamiltonian dynamics behavior.

It is interesting to note that in the two-dimensional coframe gravity only one term in the
Lagrangian preceded ky, appears. Thus the corresponding reduction of fields is impossible.
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I. INTRODUCTION

Recently, it has been shown that the wave equation for a scalar field on the exterior part of the
Schwarzschild manifold satisfies local decay estimates useful for scattering theory and global
existencé. The extension for the linearized Einstein equation is considered here. In 1957, Regge
and Wheeler investigated spin-2 tensor fields on the Schwarzschild ma‘hﬁ’d)iely classified
such fields into two types, which they called even and odd. For the odd fields, they were able to
reduce the problem to an equation for a scalar field very similar to the wave equation for scalar
fields on the Schwarzschild manifold. In 1970, Zerilli extended their results to include the even
case; although, the equation for the even case is significantly more complicated and shows less
resemblance to the wave equation for a scalar ﬁéTeIukoIsky has done a related reduction for
the rotating Kerr black hofewhich has been used to investigate the stability of the black foles.

This paper extends the local decay estimate for the scalar wave equation of Ref. 2 to the
Regge—Wheeler equation. Many of the proofs used here follow Ref. 2. We obtain the following:
for r. the standard Regge—Wheeler coordinate ,andg, there is a constar@, depending on the
initial condition through the energy norm, so that

N eI

1. COORDINATES AND EQUATIONS

2
dt<C.

The Schwarzschild manifold describes a static black hole solution to the Einstein equation.
The exterior of the black hole is most easily describedthy, 6, ¢) € R X (2M ) X & with the
metric

-1
dszz(l—7>dt2—(l—zTM> dr?-r2 ds. (2.9

To simplify the analysis of linear stability, Regge and Wheelatroduced a new radial
coordinate ., satisfying

0022-2488/2005/46(1)/012502/9/$22.50 46, 012502-1 © 2005 American Institute of Physics
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ar—<1—§!>. 2.2

e r

This allows the definition of a spacelike manifold

M=R X . (2.3

The old coordinate is now treated as a function of.
In these new coordinates, the Regge—Wheeler equation for a scalar:fielki®t — R which
determines the behavior of the odd-type tensor fields is

i+Hu=0, (2.4
where
H=>Hj, (2.5
j=1
P

Hl:_af’ (2.6)
H,=(1-59)V, (2.7

2M 2M
V=—3<1——>, (2.9

r r
Hz=Vi(-Ag) =V, 2 1(1+ P, (2.9

1=0

1 2M
VL:?(1_77> (2.10

and wheres=2 for the case of the tensor field aRgis projection onto spherical harmonics with
total angular momenturh The cases=0 is the scalar field previously considered axdl is for
the odd-type vectofMaxwell) fields.

Because of the way the scalar fields defined it is not possible for it to have any component
with spherical harmonic componeht0. It has also been shown that theel component corre-
sponds to changing the nonrotating Schwarzschild background to a rotating Kerr solution and to
gauge transformatioris’ For this reason, we only consider with no 1=0 or I=1 spherical
harmonic component. This provides a lower bound on the spherical Laplace—Beltrami operator,

~Ag=2(2+1)=6. (2.11)

For the scalar wave equation, Bachelot and Nicolas have proven global extsteboth an
energy space and i€”. The assumption of global existence @1 greatly simplifies all the
following arguments and will be assumed; although, we are not yet aware of a published paper.
However, the method of Bachelot and Nicolas should extend to the Regge—Wheeler equation
without difficulty. The assumption of global existenceGfi means that all solutions are assumed
to be C*(9) NHY(MT, dr. dPwg), are infinitely differentiable int and have time derivative in
C*(9M) N LM, dr- d’ws). The notatioru(t) denotes the function fromit — R corresponding to
u evaluated at timeé. The measure rd d°wg is used for all norms and inner products unless
otherwise specified, and the nofp| refers to theL.? norm.
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Ill. THE HEISENBERG-TYPE RELATION AND PRELIMINARY ESTIMATES

For the Schrodinger equation, the Heisenberg relation describes the time evolution of expec-
tation values for an operator and gives conserved quantities from symmetries of the Hamiltonian.
A similar relation exists for the wave equati%n.

Theorem Ill.1 (Heisenberg-type relation): For a time independent operator A and a solu-
tion to the linear wave equationtHu=0 such that u and Hu are in the domain of &hd u and
Au are in the domain of H

%((u,AU} = (u,Aw) =(u,[H,A]u). (3.1

Proof: The proof is found in Theorem 1 of Ref. 2.

The first and most important application of Theorem Ill.1 is conservation of energy. As usual
it is generated by time translation symmetry. This result is already well krfown.

Theorem III.2 (energy conservation): The Regge—Wheeler equation, Eq. (2.4), has a con-
served quantityjul|?, which we call the energy

ull2, = (0,0 + (U’ u’y + {u,— 3VUy + >, (P, (1 + 1)V, Pyu). (3.2
1=2
This acts as a metric on the spag&={u e L2 _:||ul;; <o}.

Proof: The conservation of energy follows from the Heisenberg-type relation with the multi-
plier A=d/cdt. This acts as a metric because {ne(H,+Hs;)u) term is positive. The positivity of
this potential was known to Regge and Whekled is verified here.

Since only functions orthogonal to the spherical harmonics wth andl=1 are considered

(U= 3VU) + 35 (Pl + DVLPiU) = (= 3V +(u,6VLu) = <“<_% * r_62)<1 _27M>”>
=2

Since

-2

is always positive{u, (H,+Hs)u) is positive definite. Sincél, u), (u’,u’), and{u, (H,+Hs)u) are
all positive each is defined jfl|;, is finite, and|ull;, is a metric. O

As stated in the proof of energy conservation, the energy controls certain derivative norms and
this can be used to control the growth of th&norm.

Theorem 111.3: If u is a real valued solution of the Regge—Wheeler equation [Eq. (2.4)] and
[u(t)|.2 is the norm of u at time, then for =0,

e < flully,
(Ol < tlully +[lu(O)]2.

Proof: Since(u’,u’) and(u, (H,+H3)u) are strictly positive||u(t)| is controlled by the energy.
This is used to control the growth rate [af(t)||, 2,

d d .
Ul = = 20,0,
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d .
2ull 25 ullz < 2luil 2l 2,

L il = Nz = e
dt

IV. LOCAL DECAY

For the scalar wave equation, a radial differential operataas introduced to prove the local
decay estimat@lt is used here for the same purpose. This multiplier is centered at the peak of the
angular potentiaV/, . To simplify calculations the standard coordinate is translated to a new one,
p+=r+—ax, SO thatp. =0 at the peak o¥ . This centrifugal tortoise coordinate satisfies the same
differential definition ag«, Eq. (2.2).

Definition IV.1: The centrifugal originy, centrifugal tortoise origina«, and centrifugal tor-
toise radiusp~ are defined by

a=3M, (4.1)
ax = I’*|,:a:3M, (42)
px = I« — ax. (43)

Definition IV.2: Giveno e (%,1], the Morawetz-type multipliey,, is defined by

(rs—ax)/2M
gﬂng (1+A)7dr, (4.4
0
i J d
=-— . 4.5
Yo 2<gaar* ar*g”> (4.5

As before, C solutions are assumed so that there are no domain issues. In all cases, the value of
o will be fixed and the notationsgg,, and y="y,. will be used
Theorem IV.3: If e HY(OM) and o e (%,1], then

U, 7W=0 (4.6)

and there is a constant &lim,, .. g(r«) such that

<1 n (I’* - a*)2>_‘7u
2M
Proof: Equation(4.6) is proven in Theorem 16 of Ref.@he statement of which includes the
additional, but unnecessary, assumption thaatisfy the scalar wave equatjoriFor Eq.(4.7),
Theorem 17 of Ref. 2 does not directly apply since the spéatefined there involves different

potentials. However, the same argument applies. It is first noted that&haéeand the integrand
in the definition ofg is positive and evenlg| is bounded byC,=lim,, .. g(r+). Now, by direct

computation,
< loul+ 5lg'dl < Colulbhc+ 5 (1+(“'“*)2)'”u
2 7 2 2M

(4.7

1
lvull = Cllullz + 5

2 |_2.

lvull =

u’+1 "u
g 29
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The Heisenberg-type relation will be applied to the multiplefTo do this it is necessary to
estimate the commutatgE® ,H;, y].
Lemma IV.4: Foro e (%,1],

{%%(1—%ﬁ)A%7}=—90J[%ﬂ—1}%<1—%ﬁ)A§>o. (4.9

Proof: The proof is found in Lemma 18 of Ref. 2.
Lemma IV.5: Foro e (%,1] and u in the domain of and H,

(92 g 1 I« — a« 2
<“‘i[_?3’7}“>2 ”'( (r*—a*)2>”+2(2M)3[5+(3_20)(W) ]“ - (49
1+ ——

2M

Proof: The proof is found in Lemma 20 of Ref. 2.
Lemma IV.6: Foro e (%,1] and u in the domain of H ang, there is a constant cso that

3
<u,i{2 Hj,y]u>> u, (i" LAY (4.10
)T

2M

Proof: Sinceo<1,

o 1 5+(3_20_)(r*—a*>2 - a
( (r*—a*)2>g+2(2|\/|)3 2M ( (I’*—a*>2>”+l'
1+(— 1+
2M 2M
In the proof of Lemma 21 of Ref. 2 it is shown that
. 8M\2M 2M
I[V,‘y:|=g<3—7)7<1—7>. (4.1

Sinceg< 0 forr <3M andg>0 forr>3M, i[H,, y]=-3i[V, y] is negative for <8M/3, positive
for 8BM/3<r<3M, and negative for Bl <r. In the region 81/3<r<3M, all the terms of the
form i[H;,y] are positive so an estimate of the fo@10 holds. The other values are now
treated.

It is useful to note that a term relatird), to Hj is decreasing since

5 8M
d M <0
ml_gﬂ" (r-=3m2

r

At r=2M, 3—-(8M/r)=-1=21-(3M/r)]. Therefore in M <r<8M/3 and forl =2,

8M 3M
3—7 <2 l—T ,

o1 o) < eS|
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(51 < SilH, 31

The £ factor is present due to the restriction that2 and hence thatAw= 6 and to the factor of
-3 relatingV to H,.
At r=3.3M,

g 2M 8M \ 2M g 2M 3M
F(l'T)(_?’)(?"T)T‘ S R (R e
li[Hz, v]| <i[Hs,v].

Finally for 3V <r <3.3M, sincei[Hs, y] vanishes quadratically ifr —3M) where as[H,, y]
vanishes only linearly it is necessary to boufl,,y] by i[Hy,y]. On this intervalF *<3, p.
<0.9M, andg<0.9M. Again, assuming=2,

it 1= 3g( 3~ 2 ) (2L (1 -2
r r /) (2M) r

<(3 09(E>(2>4<1—3)L<0121L
3009 33/\3/ \33/(2m)® T (2m)¥’

o <1+(ﬂ)z)wz(2M)3 (1.20257*2(2M)% ~ 7T (2M)*

2M

In summary, forr<3M and forr>3.3M, i[H,+H3,y]>0, and for M<r=<3.3M, i[H;
+H,,y] is strictly positive. Since forr<3M and for r>3.3M, i[H,y]>i[H;,y]>C(1
+(p</12M)?)~* and since for B1<r=<3.3M, i[H, y] is strictly positive, there is a consta@tso
that

C
I — a 2 U+1u '
[+
2M
O

It is now possible to apply the Heisenberg-type relatiory tand integrate the result to prove
local decay.

Theorem IV.7 (local decay):If u is a solution to the Regge—Wheeler equation [Eq. (2.4)],
|ul2,=E, u(0)=f, and 8> 2, then there is a constant Psuch that

el )

(Wi[H,y]luy= [ u,

2
dt < D EYHEY2+ || 2). (4.12
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Proof: Initially the result will be proven witlB=c+1 ando e (%,1] andp- in place ofr.. By
integrating Lemma V.6 and applying the Heisenberg-type relation, Theorem Ill.1, it is possible to
bound the time integral of the local decay term by an inner product evaluated aTt tiDespite
the explicit factors of appearing in the following, all terms are real valued:

JT ( (r* _ m)z)—wm/z
1+ u

2 T T d
dtsf (u,i[H,y]u)dtsJ —((u,iyuy = 0,iyu))dt
0 o dt

T d(d _ Tod,
Sfo |a(a<u,yu>—2(u,yu>)dt\f —2|a(u,yu)dt

0

< 2(Jull yuDle=r + 200 [Fyul)f=o
‘ e —as \2\ ™7
o))
2M
e —a \2\ 7
(o)) e

Sinceo>%, g can be chosen so th61/2<r)+%<q<§. If pis the conjugate exponent tpand
k=2/p, then

< El/2<4c(rEl/2+

+ El/2

. (4.13

o221 20k o2t
D 373 4T AT

Holder’s inequality can now be applied to the last norm in (4€l3),

NERIE

2 |u|K|u|2-K
:f T g drs dza)sz
(12

2M

1/p |u|(2—;<)q 1/q
< f |U|pKdr*d2w52 f—zmldr*d2w§ ,
m m P
1+ —
(5]
( (I’*—a*)2>_‘7
1+ —— u
2M

|u| 1-(1/p)

< WP "~z
[(5))
2M

1-(1/p)
u
< (EY2T +||f|)2P |2\ (@72
(5]
2M
For sufficiently largeT, there is a constari so that
_ o \2\-o 1-(1/p)
I« Ol 1 u
<1+< 2M )) ul <FTP pe 2\ (o+1)/2 ’
(5]
2M
(4.19
2 u 1-~(1/p)

T e \2\ o+ D12
[N (S P
o 2M

dt < EY2(4C,EY2 + |f) + FTYP

2\ (o+1)/2
2M
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0.6

\
0.2 \

FIG. 1. Plot of a lower bound foifH, y] as a function of.

This establishes an integral relation between the local decay norm and its square integral. The
local decay norm has bounded derivative since

d u 2_2 u u
\2\(+D2| T T\ 2\ o+ D2 T\ 2\ (o+1)2
Mol e ET s
2M 2M 2M
= u 1/2
<2 oo \2\(D72 S (4.19
1+ —
( <2M> )

These two conditions are sufficient to apply Lemma 25 of Ref. 2. That lemma states that for
6:R — R* with uniformly bounded derivatives e (0,3), if [56(7)? dr< Cy+C,t<6' ¢ thentea(t)!
goes to zero sequentially and herf¢@()? dr< C,. The lemma can be applied withas the local
decay norm, 1p=¢, andC,; andC, as in(4.14).

This proves the result fop e (2,2] and for p. instead ofr.. Since (1+(p./2M)?) 7 is a
decreasing function g8, the result holds for alB> % Finally since for anys there is a constant
so that for allr., (1+[(r«—ax)/2M]?)B<C(1+(r./2M)?)~# the statement of the theorem holds.

O
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APPENDIX: NUMERICAL VERIFICATION OF THE POSITIVITY OF THE COMMUTATOR

The key step in proving the local decay estimate is the lower bound for the commutator
i[H,y] proven in Lemma IV.6. From the asymptoticsipfl,, y]=r~* andi[Hs, y]=r~3itis clear
that the negative contributions froifH,, y] will be dominated eventually and it is sufficient to
showi[H, vy] is positive in some finite domain. To verify positivity of the commutator, the sum of
the exact form foi[H,, y] from Eq.(4.11), the lower bounds foi{H,, y] from Eq.(4.9), and the
lower bound fori[Hz, y] from Eq.(4.8) with I=2 is plotted forM =1 ando=1 in Fig. 1. From the
graph it is clear that the total commutator is positive. The graph decays because all the terms

involved decay. This provides an alternate, numerical verification of the result proven in Lemma
IV.6.
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Listing has recently extended results of Kozameh, Newman, and Tod for four-
dimensional space—times and presented a set of necessary and sufficient conditions
for a metric to be locally conformally equivalent to an Einstein metric in all semi-
Riemannian spaces of dimensines 4—subject to a nondegeneracy restriction on

the Weyl tensor. By exploiting dimensionally dependent identities we demonstrate
how to construct two alternative versions of these necessary and sufficient condi-
tions which we believe will be useful in applications. The four-dimensional case is
discussed in detail and examples are also given in five and six dimensic2&050
American Institute of Physic$DOI: 10.1063/1.1823071

I. INTRODUCTION

Kozameh, Newman, and Tbtiave shown that a certain pair of necessary conditions are also
sufficient for afour-dimensional space—tinte be conformal to an Einstein space—time—with the
exception of those space-times whose complex Weyl scalar invalaht (In the conformal
Einstein space with metrigyy, R"°‘bCd represents the Riemann tensfil"‘,bCd represents the Weyl

conformal tensor,R%_, represents the Ricci tensoR=R?, the Ricci scalar, andRy,=Rup

—Rg,,/n the trace-free Ricci tensor whefég vV b]VC:—Rabchd for an arbitrary vectoW?. |,J are

the usual complex Weyl scalar invariants in four dimensions,@sdC?",,C° .. More details of
2

the notation are given in the next sectipimplicit in their paper was another result: faur-
dimensional space—timgith metric g,, can be transformed into an Einstein space by a conformal
transformation if and only if the vectd¢? given by

K?=4c*,vic! ck/c2; (1a)
satisfiegthe n=4 dimension version ¢f
R+ (= 2)(VKp = KKy = (VK = KK ) gay/n) = 0 (2a)

for the class of space—times whe@# 0. The essential ideas in Ref. 7 were to exploit the
2
properties that Einstein spaces are a subsél spacegspaces whose Weyl tensor is divergence
free, VaCabcd: 0) and that spaces conformal @spaces satisffthe n=4 dimension version ¢f
VEC?+ (N = 3)C K =0 (3

and hence to extract the explicit expressitg) for K2 by using thefour-dimensionallimension-
ally dependent identity

3E|ectronic mail: bredg@mai.liu.se
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cY,C®* = &'kc23/4. (43)

The principles underlying the techniques used in Ref. 7 originated in a study of conformal trans-
formations by spinor methods by Szeketeand although most of the work in Ref. 7 was tensor
based, some lemmas were proven by spinor methods; this is probably why Kozameh, Newman,
and Tod have commented that their method in Ref. 7 does not seem to be extendible to higher
dimensionsn>4. However, recently Listifjhas exploited the same principles more generally
and shows that the condition that a particular vect8robtained from(3) satisfies(2a) is a
necessary and sufficient condition for conformal Einstein spacedl semi-Riemannian spaces
with dimensions B 4—subject to a nondegenerate determinant condition on a matrix representa-
tion of the Weyl tensor. On the other hand, when the four-dimensional results from Ref. 8 are
compared with Ref. 7, the explicit form of the vecfd? in Ref. 8 differs considerably from its
counterparkK? used in Ref. 7 and quoted above(ite); furthermore, the nondegenerate determi-
nant condition in Ref. 8 is not easily translated into a condition on the real Weyl invariant scalars
in the n-dimensional case, although Listing states that this condition is equivalent in four dimen-
sions to the complex scalar invariant Weyl scala 0.

It is well known that we can writeC*.=C%,, where A=[ab], C=[cd] so thatA,C
=1,2,... N(=n(n-1)/2) and so conside€ as anN X N trace-free matrix(Note that we are not
making use of the symmetrieS,y,c= Ccgap aNd Cypeqi=0, and in fact this construction is valid for
any trace-free double 2-form; also, we are not defining a metric foNtdenensional space, nor
even making use of the-dimensional space metrig,;, in this constructior).

Instead of exploiting higher dimensional counterparts of identities sucf#as Listing’s
result and proc?fassumed dé€) # 0 and then used the inverse mat@x? to solve(3) for K%
howeverC™* cannot be easily interpreted in tensor notation without some translation and, in that
form, does not seem to be very useful in practical applications. In the illustrative example in Ref.
8 Listing restricted himself tdour-dimensional Riemann spgoghere he followed the technique
in Ref. 7 of using thefour-dimensionalidentity (4a) to extractkK?, and also used properties
dependent on thpositive definite metricthis avoided having to deal witG™* directly.

Although the four-dimensional identiti4a) is well known, the existence of higher dimen-
sional analogue@Ref. 2 seems less well known and one purpose of this paper is to draw attention
again to the power and usefulness of such dimensionally dependent tensor ideSgesalso
Refs. 9, 3, and 13.

We shall show in this paper how to exploit dimensionally dependent ideAtiesbtain
results valid in all dimensions=4 and automatically in all signatures; in particular we will

(i) reformulate Listing’s results in Ref. 8, and in particular,(@8t# 0 and the inverse matrix
C~1in the tensor notation of Ref. 7;
(i)  obtain explicit solutions fok# which avoid the use o€™! altogether.

We shall also show explicitly how the four-dimensional results implicit in Ref. 7 can be seen
as special cases of this formulation of Listing’s result, and are valid for all signatures.

To demonstrate the usefulness of our versions, we will consider the four-, five-, and six-
dimensional cases, independent of signature. The higher dimensional analofubs four-
dimensional identity4a) will be the basis for our applications in five and six dimensions.

II. NOTATION

We begin with some notation which we will use to link algebraic and tensor notation, and
prove a simple lemma. Let us define, for 1 Weyl tensors, @hain of the zeroth kindf
Cip—ljp—lcd,

1 1212 13l3 p-1Jp-1

ab _ ~ab i1i1 iZia ... Clp-2lp-2
%cd_c..c . Cldz ...Clr2p2

noting that(liabcdz C?

A useful relation is
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ab cd _ ab
C ch ef ™ C ef
p q p+q

and the following scalar invariants arise naturally:

— ab
C - C ab-
p p

Of course there are other Weyl scalar invariagetg., C? ¢,C°.%C%,.) which do not fall into this
pattern. The simple obvious identifications which we will exploit are

_ ~ab
Cp_% cd’

(chH= (p3 (5

where( ) denotes the trace of a matrix; but note that expressions(]?lgehave no such obvious
2

identification in the matrix notation.
The Cayley—Hamilton theorem for the trace-fide N matrix C is given by

CoCN+c,CN 2+ cCN 3+ -+ 4+ ,C2+ 1 C + eyl =0, (6)

wherel is the N X N identity matrix, and

co=1, &=~ 5(C?), ¢3=-5(C, == 3((CH-3(C%?),
cs=- £((C% - H(C?X(CY),

¢ == ((C% - §(C(CH - HCP2+ (€D, ...,

ou=- (Y ) @

are the usual characteristic coefficients; siftés trace freec;=0. This theorem can easily be
rewritten in chain notation as

ab ab ab ab ab —
Co% cdt CzNC2 cat CaNC3 cat ot CN—zg cdt CN—1C1: ea* Cndfedh = 0, (6')

where the characteristic coefficients are now given in terms of Weyl scalar invariants by

— — 1 - 1 — 1 1~2
Co—l, Cz—_ic, C3—_§C, C4—_Z(C_§C),
2 3 4 2

1
CN:—N(%+...+...)_ (71)

From the well-known result-1)N detC)=cy the required translation of d&)+ 0 into tensor
language follows immediately:
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0# (- 1D)VINde(C)=C+ -+ + -+ . (8)
N

Lemma:In n-dimensional spaces, the inhomogeneous algebraic equation for the V&ctor
b — b
Ca cdvd - Ha (o3}

has a unique solution when conditié8) holds; the solution is given by

: HYp(co C 25+ C 2% +c3 C 20+ -+ +0y oC)),

(n=1)cy N-1 N-3 N-4
whereN=n(-1)/2 The coefficients,,c,,Cs, ... ,Cy_2,Cy are the usual characteristic coefficients
of the Cayley—Hamilton theorem given {i").
Proof: We consider the Cayley—Hamilton theorem for th& N trace-free matrixC in tensor
notation in(6"), with characteristic coefficients given l§y’).
Multiplying by V, gives

— ab ab ab ab ab ab
0=Va(CoCTeq+C2 C Mot Cs C oat €a C Toat +++ + Cn-2Cea+ On-1Ce) oNVcdh)

_\ (ab i i i i i ab
=VaC(Co Clegt € Clogt g C iyt ey CUigt v +0ygClig) + CneaVaC¥%y + CuViodh-
1 N-1 N-3 N-4 N-5 1 1

From which, by taking the trace and remember@f).,=C®_, is trace free, we obtain
1
- . - . - n-1
0 :VaCabij(CO Clp+c, CU e Cl+c, CUpt v +eypCliy) + ——CnVe.
N-1 N-3 N-4 N-5 2

Rearranging gives the solution in the lemma. O
For future reference, we note that tfmur-dimensional identitf4a) can be written in the
chain notation as

(Z:Cjck: gl;cz:m'
and this is actually a special case of the more general idé%tit)tour dimensions only

CY,=48Cl4, p=2,3,4,... . (4b)
p p

We have preferred the notatiorC,C,...,C,... to the (possibly confusing notation
2 3

P
C?,C3,...,CP,...used in Refs. 7 and 8 and elsewhere for these Weyl scalar invariants.

Finally we note a very useful dimensionallydependentdentity (a direct consequence of the
first Bianchi identity,

4Ca[ij]bCCijd = CabijCCdij .

IIl. REFORMULATING LISTING’s RESULT AND REDERIVING THE IMPLICIT RESULTS
IN REF. 7

With this lemma we determine the vectéf from (3),
Ka

ke ab ab ab ab
Vv C”kb(CONCl ij #C2 C 7y +C3 C ™ + -+ + Oy oL 9)

- (n=3)(n-1)cy N-3 N-4

providing restriction(8) holds, whereN=n(n=1)/2.
Substituting this value foK? back into(2a) gives necessary and sufficient conditions defined
only in terms of the geometry.
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We can therefore reformulate Theorem 4.5 in Ref. 8 as follows.

Theorem 1: A semi-Riemannian manifold, with a Weyl tensor subject to the restriction (8), is
locally conformally related to an Einstein space if and only if the vector fieldgiken in (9)
satisfies (2a)

Four dimensionsWe now will retrieve the four-dimensional results implicit in Ref. 7 from
this theorem in a signature independent manner. Instead of substitutikg ¥adth the expression
(1a) as used in Ref. 7, or the four-dimensional version of the expression invaliihin Ref. 8,
we can now use tha=4 version of(9),

2 )
Ke= 3_%ch” kb(COE_):abij + Czca:abij + C3C2:abi it CACabij) (10)

providing cg # 0 with the characteristic coefficients given B¥) in terms of Weyl scalars. How-
ever, since the solution fd€2 is unique we should be able to see precisely the links between these
two expressions irfla) and (10). To retrieve the resultla) from (10) we simply substitutg3)

back into the right-hand side @& slightly rearranged(10), for all terms except the last one, and
use identity(4a) on each of these terms,

3ceK? = - 2KKC! kb((szabi [+ ngabij + c3c2:f=‘bi ) +2c,C%%, VT,
== ZKK(ECbkb + CZngkb + ngCbkb) +2¢,C%, VKCl,,
=- %Ka(% + ng + 039 +2¢,C ,VKCly,
which rearranges to
(6cg + %: + CZS: + c3(33)Kc = 4C4C”ckaCkbi i
and via(7') to
CaCK?= - 4c,C% V*Cly,

and hence t@la—providing C+# 0+ C—C?/2.
2 4 2
Kozameh, Newman, and Todhave shown that it is possible to obtain three alternative ver-

sions to(1a) for K? consisting of
K?#=4C*,VkCl JC forC+#0
2 3 3

together with two other similar expressions with invariants involving the dual of the Weyl tensor.
We do not wish to depend on expressions with duals in this work since we wish to generalize the
four-dimensional case to all higher dimensions. Instead, from the general iddfjitye see that

we can obtain the various expressions Kdrfor all integersp=2,

K&=4C 2, V&l ,/C for C+# 0. (1b)
p-1 p p

So, in an analogous manner to which we retrieyeg from (10), we can also retrievé€lb) for
p=3, 4, 6; by use of the Cayley—Hamilton theorem we could also retrieve the resufts foand
p=7, although aftep=6 these expressions are not independent precisely because of the Cayley—
Hamilton theorem. We note that we cannot retrieve the versiofllof directly with p=5 from
(10) due to the fact that the relevant term involved the coefficignivhich is identically zero,
being the trace o€, ™.
It is well known that in four dimensions there exist only four algebraically independent Weyl
scalar invariants: these are usually given in terms of the well-known complex invariantsJ,
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which come naturally from considerations in terms of spinors or complex Weyl tefisbish
exploit the very simple and unique structure of the Weyl dual in four dimengitihae wish to

only employ structures which can be exploited in higher dimensions, we would consider instead
the four algebraically independent scalélxslzi, (33 (21: (or any four from(lj, (2: (33 (21:' (53)10 (see also

Refs. 11 and § and providing there is at least one Weyl scalar invariant which is nonzero, we can
calculateK? explicitly.

Higher dimensionsTheorem 1 gives an explicit tensor expressionK8rfor all dimensions.
So, for example, iffive dimensionsN=10 and we obtain

ka= L yici kb(coca +C,C* + c3cab -+ c7ca +cgC™;
4c 10 7

providingc,o# 0 with the characteristic coefficients given ¢¥) in terms of Weyl scalars. Clearly

this expression involves quite high order terms in the Weyl tensor, and we note that in the

four-dimensional case, we were able to get lower order expression&?fday exploiting the

individual dimensionally dependent identitietb) rather than the Cayley—Hamilton theorem im-

plicit in Theorem 1. So, in higher dimensions, we would also expect to exploit individual dimen-

sional identities, analogous to the four-dimensional identi@ds, in order to obtain alternative

lower order forms in the Weyl tensor fé&? in n dimensions.

IV. LOWER ORDER VERSIONS OF K2 IN n-DIMENSIONS

In four dimensions, providing we pay the price that at least one scalar invariant is nonzero, we
are able to solve the four-dimensional version(8f, and obtainK® The versions from the
individual identities(4b) are more concise and manageable than the versions from the Cayley—
Hamilton theorem; on the other hand, in four dimensions, the latter include all the simpler results
as special cases, and are more general, in the sense of weaker restrictions on the Weyl scalar
invariants. Of course also the Cayley—Hamilton approach is applicable in all dimensions. How-
ever, we now will show how to obtain alternative simpler versiondfom dimensions other than
four, by direct application of dimensionally dependent identities analogous to those used in four
dimensions in Ref. 7.

The set of identitieg4b) are all consequences of the well-known four-dimensional idefitity
is interesting to note, in this notation, that the underlying identity for the Cayley—Hamilton theo-

rem for the trace-free 8 6 matrix C is C'* [, 53%2?3—0 (Ref. 21,2

cl 6§ =0, (11)

and we shall now exploit their higher dimensional analogues in the same way as in Ref. 7 for the
four-dimensional case. For five dimensions we have

C [cd‘s hi] = =0, (12)
and for six dimensions,
C [0(15 hu] =0, (13)
and so orf.
These lead to
CCd Cphabc[ab [cdé hi] — =0 (14)

for five dimensions, and
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Co C" 1, C1?° [cd® ‘ﬁ.f,%” =0 (15)

for six dimensions, and so on. Of course, these are just representative for each dimension of the
various identities that can be created; but it is of interest to note that for the lowest order in Weyl
in each dimension—in five dimensions cubic, in six dimensions cubic, in seven dimensions quar-
tic, and so on—there is only one possibility, but as we look at higher orders—in five dimensions
quartic, in six dimensions quartic, in seven dimensions quintic, and so on—there will be many
more possibilities. Unfortunately, when expanded, such two-index identities in higher dimensions
will not have such a simple form as the four-dimensional identiiis.

In higher dimensions there exist greater numbers of algebraically independent Weyl scalar
invariants, and so there will be greater numbers of two-index tensor identities analogdiss to
for each dimension> 4; furthermore, the tensor identities analogougitn will be based or{14)
and (15), ... and so will also require more Weyl tensors as the dimension increases. Since, in
higher dimensions, a product of three or more Weyl tensors yields more than one Weyl scalar
algebraically independent of each other and of invariants of lower @edgr, in general%: and

C3°,C'J4C%, are algebraically independent =6 dimensiony and more than one algebra-
ically independent two-index tensor, we expect the higher dimensional analogues of idéftities
to consist of linear combinations of Weyl tensors on both sides of the identity.

However, it is important to note that, although these higher order two-index identities will
have more terms, and higher products, they will have the same crucial structure, which we can
represent by

L{C}, = 8lL{C}/n, (16)
p p

where L{C}jk represents a two-index tensor consisting of a linear combination of produgts of
p .
Weyl tensors, and{C}=L{C}'; represents a linear combination of scalar productp a¥eyl
P p
tensors(Note that each term is unlikely to be just a simple chalinfollows, for L{C}# 0 from
p
(16),

K = nL{Cy K¥/L{C}, (17
p p

and hence all the terms involving the veckdron the right-hand side—which will each contain a
factor of the formC~ Kk—can be replaced usin@) by

1
C Kk=——VkC" . 18
K 3 K (18)

We can summarize these new results as follows.
Theorem 2: An ndimensional semi-Riemannian manifold with a nondegenerate Weyl tensor
restricted by KC}# 0 [where L{C} is associated with an identity of the form (16)] is locally

conformally relapted to an Einstepin space if and only if the vector fiéldjiken in (17) with the
appropriate substitutions (18¥atisfies (2a)

Clearly from Theorem 2 we will obtain fok® much lower order expressions in the Weyl
tensor than from Theorem 1; for example, in five dimensions using Theorem 1 will require terms
involving products of 10 Weyl tensors, whereas if we use Theorem 2 it looks possible to use terms
with only three Weyl tensors, frorgi4).

V. FIVE- AND SIX-DIMENSIONAL SPACES

For higher dimensional spaces we can use Theorem 1 with the respective substitutions
=5,6,...into (9). But for spaces where we know dimensionally dependent identities of the form
(14) and(15), etc., we can use Theorem 2.
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So for spaces with dimensian> 4 there is the need to systematically write out explicitly the
two-index identities such a44) and(15), etc., forn=5,6,... . Inthis section we give just a few
examples in five and six dimensions as illustrations.

Five dimensionsAfter a straightforward calculation we find thélt4) expands as follows:

Cajbccbcdecdeak - 2C:ajbkcbcdecdeac - 4Cajbchdek Cead = %(CabchCdefCefab - 4Cabcd Ceafcdfbe) 5{(
(19

Although this appears to have the structurgld), unfortunately when we also consider the scalar
identity closely related tg14),

C*aC el C* ead ] = 0
we find

CadeCCdefCefab - 4Cade Ceafcd fbe- (20)

(This five-dimensional scalar identity was also noted in Ref. 6, where it was obtained from the
five-dimensionaidentity C*, C*°,C®' .;;=0.) This means thatl9) does not have the structure

of (16) as we hoped, since its right-hand side is identically zero. However, we do have an
interesting two-indexive-dimensionaidentity which will be useful in other contexts,

Cajbccbcdecdeak - 2CajbkaCdeCdeac - 4Cajbccbdekccead =0. (21)
On the other hand, if we consider of@ a number of quartic identity in five dimensions,
CH9,CP 4 C%C ™ a0 §1 = 0 (22
we obtain

SCqjipCipqkCadeCCdab - 8ngipcipqkCabchCjab + 8ngipcipqecbeagcajbk - 4ngipCipquabgkCejab
- 8(-\’qgip(-\’ipqe aebkcbjag = (ngipcipqgcabchCdab - 4ngipcipqdcabchCdab) ‘Sik (23

which again appears to have the structurél@). [The use of the identity21) does not give any

simplification] We need to determine whether the right-hand sid@8f is nonzero. Unlike in the

cubic case where there was only one possible scalar idé¢g@ythere will be a number of quartic

scalar identities in five dimensions; so although we will return to examine these another time, for

now we simply note, via a counterexample, that the right-hand side cannot be identicaﬂf} zero.
Hence, via the substitutiofi8), we obtain the following form fokK!:

KJ = = (5CY, ,C*(C*%,, VHCP yy — 8C9, C* [C,,VKCP + BCH CP C%, VKCH
- 4C%, CP,C%,,VKC™ — 8CI9 CP L") VHC?,)/2(C™, P CP C™%y
— 4C%9, CP C C%%). (24

We can then substitute this value fiét into the five-dimension version @Ra),

Rab+ 3(VaKp ~ KaKp = (VK¢ = K°K)Gat/5) = 0 (2b)
to obtain the required necessary and sufficient condition.
Six dimensionstWhen we expand15) we obtain
Cakbccajdecbcde_ 2C:akbj aCdercde_ 4CakbCCdjbeCcdae: Fls(cadeCcdefCefab - 4CadeCaechdebf) 6{(
(25

Unlike for the case of the five-dimensional two-index ideniify), there is no related scalar
identity cubic in Weyl tensors, analogous(&0). So therefore we do not need to worry about the
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possibility of the right-hand side of25) being zero, and so we have an identity which has
precisely the structuréel6). ’
Hence, via the substitutiof18), we obtain the following form foiK’:

Ki=- Z(Cajd C dwkcakbc_ 2 acdercdwkCakbj 4Cdjbe cdaerCakbc)/(C CcdefCefab
— 4C,79C*,Cye ). (26)

We can then substitute this value fiét into the six-dimensional version ¢2a),

Rap+ 4(V K = KKy = (VK — K%K ) ga/6) = 0, (20)

to obtain the required necessary and sufficient condition.

There do not seem to be many explicit examples of identities for the Weyl tensor in higher
dimensions in the literature. However, there does exist a six-dimensional two-index tensor identity
quartic in the Weyl tensor which was identified some time ago by Loveldcouble three-form
with the antisymmetric and trace-free properties, respectively,

Habk - H[abk] ef]'
Hap*®'=0 (27)
in six dimensiongand lowej satisfies the identity
Haok *Hae™ = § SHape * Her . (28)

This then becomes a quartic identity for Weyl with the choice
Hijkabc: Aijkabc_ gAr[jk s %] +3Agi rs[cé? o E} _ArstrSt% 5b 5% K] (29)
where
AijkabC: 4C;; h[ack]h bel, (30)
By substituting(29) into (28) we obtain

cde abc de] acd be] ade, bej _ abc deJ
Aabk Acde + 3A, abk + 6A abk 3Aabc ek Aabc +6A

— k(Aa abc def+9Aa ade, bcf gAa abd efcef_Aabchf efab<§/6' (31)

abc

which is precisely the structure 016). Hence, we obtain the following form fd¢!,

Kj — 6(KkAkadee deabJ + 3KkA abc de]+ 6KkA acd bej abc lkkAkde

abe chAkd deJ+6Aabc J)/(Aa abc dEf+9Aa ade, bcf gAa abd efcef
- abcdEf efab ) (32

where all terms involvind<* on the right-hand side are replaced via the substitution

K Ay 4= V¥Cyga 1 Cy 49 = VHC, J9C,, P (33

and all other terms replaced witB0). We then substitute the value f&¢ from (32) into (2¢) to

obtain the required necessary and sufficient condition. It is of course necessary to check that the
right-hand side of(32) is not identically zero; this can be confirmed with a simple
counterexamplé?
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VI. SUMMARY AND DISCUSSION

We have demonstrated the power of dimensionally dependent ide¢itiiesr as the Cayley—
Hamilton theorem, or as individual identities in specific dimensions sucktas(23), (25), and
(31)] to translate the existence result of Lisl‘?niglto versions which can be applied directly;
furthermore, these applications are completely independent of signature. Theorem 1 gives a gen-
eral reformulation of Listing’s result on the existence of necessary and sufficient conditions in a
form which can be directly exploited. So if one wishes to test if a particular metric is conformally
Einstein, then it is a simple procedure to find its Weyl and trace-free Ricci tensor and to test
directly—for instance, using GRTENSOR (Ref. 14—if condition (2g) is satisfied.

We have drawn attention to the higher dimensional analo@2®s (25), and (31), etc., of
identities (4b), which are the basis for Theorem 2; for applications, Theorem 2 would seem to
provide a simpler and more manageable tool—providing the appropriate identities are known.

A major complication when we move to dimensioms- 4 is that there are many more Weyl
invariant scalars, and of course they cannot all be written in the @rirhe same sort of detailed

analysis of the Weyl invariant scalars for5,6..., as habeen(pa?tly) carried out fom=4, as
well as a systematic presentation of two-index identities, is a necessary prerequisite for a system-
atic examination of all possible versions of the vedt@r As Bonanos has pointed oliexisting
detailed studies such as Ref. 4 do not take into account invariants formed from duals, or identities
from the Cayley—Hamilton theorem. There are still a number of interesting issues to be investi-
gated further.

There appears to be an important difference between even and odd dimensions: for even
dimensionsn=4,6,8,... thesimplest two-index identity involves products of 2,3,4Weyl ten-
sors, respectively, such @4a) and (25), with a “delta term” on the right-hand side; for oad
=5,7,... thesimplest two-index identity involves products of 3,.4Weyl tensors, respectively,
such as(19), but it would seem likely that as i21) the “delta term” on the right-hand side
disappears because of an identically zero coefficient. For the investigations in this paper we need
an identity of the former type, so in general it appears that for even dimensi2is we will be
able to exploit comparatively simple identities involving productsofWeyl tensors, while for
odd dimensions1i=2m-1 we will only have more complicated identities involving products of
m+1 Weyl tensors. On the other hand, we anticipate that in other investigations the simple
identities such ag21) will be very useful.

Listing8 has stated that the condition d&t 0 in four dimensionss equivalent to the complex
Weyl invariant scalad # 0; by a little manipulation this can be shown to be equivalent to at least
one ofC3: and(é‘, being nonzero. It would be useful to know this condition in higher dimensions in

terms of the real Weyl invariant scalars, and hence understand it better. The fact that the right-hand
side of identity(19) is identically zero should alert us to the possibility of identically zero scalars
arising in some situations.

The use of the dual Weyl tensor makes work in four dimensions comparatively easy—for
instance there is a basis of four Weyl scalar invariants none of which is higher than cubic in Weyl,
compared to having a basis with invariants up to fifth order in Weyl if the dual tensor is not used;
in higher dimensions the major advantagfee dual Weyl tensor is also a double two fordoes
not apply, and work gets more complicated. However, we believe that it is still possible to take
advantage of other benefits of the dual tensor, and we will discuss this possibility, together with
the other points mentioned here, elsewhere.

Finally, we note that the necessary and sufficient conditions investigated by Eiatirnlgin
this paper were different from the necessary and sufficient conditions investigated explicitly in
Ref. 7 in four dimensions. In Ref. 7 these conditions involved the Bach tensor which of course is
only defined in four dimensions. It will be shown elsewhere how the techniques in Ref. 8 and in
this paper can be used to investigate these alternative conditions as well as to generate an
n-dimensional generalization of the Bach tensor.
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In this paper we study for a given azimuthal quantum numbtre eigenvalues of

the Chandrasekhar—Page angular equation with respect to the parapmetara
andv:=aw, wherea is the angular momentum per unit mass of a black holés

the rest mass of the Dirac particle ands the energy of the particl@s measured

at infinity). For this purpose, a self-adjoint holomorphic operator farily; u, v)
associated to this eigenvalue problem is considered. At first we prove that for fixed
KE R\(—% , %) the spectrum oA(«; i, v) is discrete and that its eigenvalues depend
analytically on(u,v) e C2. Moreover, it will be shown that the eigenvalues satisfy

a first order partial differential equation with respectut@nd v, whose character-

istic equations can be reduced to a Painlevé Il equation. In addition, we derive a
power series expansion for the eigenvalues in terms—qf and v+ u, and we give

a recurrence relation for their coefficients. Further, it will be proved that for fixed
(u,v) € C? the eigenvalues oA(«x; u, v) are the zeros of a holomorphic functién
which is defined by a relatively simple limit formula. Finally, we discuss the prob-
lem if there exists a closed expression for the eigenvalues of the Chandrasekhar—
Page angular equation. 8005 American Institute of Physics.

[DOI: 10.1063/1.1818720

I. INTRODUCTION

The angular eigenvalue problem of a séirparticle in the Kerr—Newman geometry is given
by the Chandrasekhar—Page angular equation

L1,S:1/2=(@amcos - N\)S_y )y, 1)

L1,S.12=(@amcos 0+ \)S,y,, 2

see Chandrasekh&t998, Chap. 10, Sec. 1)4where the Kerr parameter is the angular mo-
mentum per unit mass of a black hole amds the rest mass of the Dirac particle. Moreover, the
differential operatorsCy,, are defined by

cot 6 . K
Q(0) := aw sin O+

LI,=0,£0Q(0) + , —
12= gt Q(6) > sin o

e (0,m)),

where w is the energy of the particléas measured at infinityand « is a half-integer, i.e.,
K=k—% with somek € Z. A parameteir € R is called areigenvalueof this spectral problem if the
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system given by1)-(2) has a nontrivial solution which is square-integrable(@nm) with respect
to the weight function sird. In this paper we study for fixede the eigenvalues of the
Chandrasekhar—Page angular equation as a function of the parametens and v:=aw. AS a
main result, we will prove that the eigenvalues satisfy a first order quasilinear partial differential
equation, and we will derive a power series expansion for the eigenvalues in temmsucdnd
v+ u.

For this purpose it is necessary to consider the sy$1g+®) in a more general context where
« is real, |k| =%, and u, v are complex numbers. At first we rewrite this system for fixed
e H\(—%,%) as an eigenvalue problem for some self-adjoint holomorphic operator family
A=A(k; u,v) depending on the parametdys, v) € C2. In the special case whefg, v) € R? the
differential operatoA(x; u, v) is self-adjoint and has purely discrete spectrum. In Sec. Il we prove
that for a givenx the eigenvalues(x;u,v) of A are holomorphic functions itu,»), and we
derive some basic estimates for them. Furthermore, we transform the Syi9té?n to a matrix
differential equation

1 1
y'(x) = {;Bo + leBl + C] y(X) (3

on the interval(0, 1) with coefficient matrices

k 1 k 1
-—=— u-\ —+ = 0
-2y —
2 4 2 4 2 2u
BOZ y Bj_: ] C: )
0 K+1 N Kk 1 2u 2v
2 4 H 2 4

which can be extended to the complex domaiq0, 1}. In this way we obtain a further charac-
terization of the eigenvalues é&fand some useful estimates for the corresponding eigenfunctions.
Applying analytic perturbation theory, we show in Sec. lll that the eigenvalu@es u, v) satisfy

the partial differential equation

dN N
(w=2vN)— + (v —=2uN)— + 2k + 2urv=0. (4)
au v

In particular, this result can be used to obtain a recurrence relation for the coeffigignes a
power series expansion

[

N ) = 2 Cna(v= )"+ )
m,n=0
In Sec. IV we solve the PDE4) by the method of characteristics. First, we derive an explicit
formula for the eigenvalues in the cale|=|v|. Moreover, in the regions wherg| #|v| we
reduce the characteristic equations(4f to a Painlevé Il equation

v’ +tov" —t(v')? - 2k(@?+ v -t(*-1)=0

with parametersy=+ 8=2« and y=-46=1 according to the notation in Milnet al. (1997 and
Mansfield and Webstg1998). As this differential equation is in general not solvable in terms of
elementary functions, we cannot expect a closed expression for the eigenvalues of the
Chandrasekhar—Page angular equation for(allv) e R2. However, if  is a half-integer, i.e.,
K:k—% with some positive integek, thena+ 8=2(2k-1), and there are integrals of polynomial

type for the third Painlevé equation in this special case, cf. Miéheal. (1997. Hence, if

K=i'%, ig, ..., there exist algebraic solutions of the partial differential equatidn and the
question arises if these explicit solutions are in fact eigenvalues of the Chandrasekhar—Page
angular equation. It turns out that there is another type of “special values” associated to the
operatorA, called monodromy eigenvaluggvhich belong to the algebraic solutions of the PDE
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(4). For a half-intege, the monodromy eigenvalues are introduced in Sec. V by requiring that
the system(3) has a fundamental matrix of the form

[X(1 =] H(x)

with an entire matrix functiorH:C— M,(C). This property turns out to be equivalent to the
existence of special solutions of the form

[X(l _ X)]—(K/Z)—l/4pi(x) etth’

wherep*: C— (2 are polynomials ant= +\1%- u2. For comparison purposes, an eigenvalué of
can be characterized by the property tt@®tpossesses a nontrivial solution of the form

[X(l _ X)](K/2)+l/47](x)

with some entire vector function: C— C2. We prove that the monodromy eigenvalues are zeros

of a polynomial with degreek2-1 whose coefficients are polynomials gnand v. Moreover, it

can be shown that monodromy eigenvalues and “classical” eigenvalues are distinct at least in a
neighborhood of «,»)=(0,0). Nevertheless, they are both characterized by the fact that certain
monodromy data of the syste(8) are preserved for all parametdys, v). In fact, A is a mono-

dromy eigenvalue of if and only if the monodromy matrices ¢8) at the regular-singular points

0 and 1 are diagonal, whereass a classical eigenvalue éfif and only if a certain nondiagonal

entry of the connection matrix for the fundamental matrices at 0 and 1 vanishes. Hence, for the
Chandrasekhar—Page angular equation the monodromy as well as the classical eigenvalue problem
is closely related to the isomonodromy problem for the differential equaBpnMonodromy
preserving deformations for such a system were studied by Jenhlah (1982, but only if the
eigenvalues 0B, and B, do not differ by an integer, i.ex+% & 7. In Sec. VI we consider the
isomonodromy problem fai3) in the case thak is a half-integer. As a consequence, we show that

the monodromy eigenvalues &f satisfy the partial differential equatiod), and we obtain an
alternative derivation of4) for the classical eigenvalues &f Unlike the proof in Sec. Ill, which

relies on the particular structure of the Chandrasekhar—Page angular equation, the method pre-
sented in Sec. V is more general and based on finding suitable deformation equations for
parameter-dependent differential equations. Thus, we expect that this technique is applicable to
other eigenvalue problems as well.

Il. A SELF-ADJOINT HOLOMORPHIC OPERATOR FAMILY ASSOCIATED TO THE
CHANDRASEKHAR-PAGE ANGULAR EQUATION

By introducing the notations

Si1/2(6)
S1/2(6)

the Chandrasekhar—Page angular equatlgii2) takes the form

Mi=am,  vi= aw, S(0)==\’SiTB< ), 0 e (0,m)),

0 1 - Ccosé —ﬁca—vsinﬁ
(QlS)(G)==(_1 O)S’(0)+ . SO =r86) (5
_SiTt9_VSin0 M Ccos

with fixed e R\(-3,3) and parameter$u,»)  C2. We can associate the so-called minimal
operator A, to the formal differential expressiorl, which acts in the Hilbert space
H:=L2((0,),C?) of square integrable vector functions with respect to the scalar product
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0

The operator, given by D(Ay)=C5((0,7),(?) and A;S:=2AS for Se D(Ay) is densely defined
and closable. Fo| 2% and(u, v) € R? the formal differential operator itb) is in the limit point
case at 0 andr, henceA, is even essentially self-adjoint. In the following we denote the closure
of Ay by A=A(k; u,v). According to Weidmanii1987, Theorem 5)8he domain ofA(«;0,0) is
given by

D(A) ={Se H : Sis absolutely continuous anil «;0,0)S € H}.

SinceA(x; u,v)=A(k;0,0+T(u,v) with the bounded multiplication operator

- 4 COS 6 —vsin6>
-vsind ucosd /)’

T(u,v) = (

its domain of definitionD(A) is independent ofu, v) € C?, see Kato(1966, Chap. 1V, §1, Theo-
rem 1.1). Moreover, if (u,v) € R?, thenT(u,v) is a symmetric perturbation of(«;0,0), and
Theorem 4.10 in Katgl966, Chap. V, 8yyields thatA(«; u, v) is self-adjoint. Thus, according to
the classification in Katq1966, Chap. VII, 83 A(k;u,v) forms a self-adjoint holomorphic
operator family of type(A) in the variables(u,v) € C2. Further, the spectrum o&(«;0,0) is
discrete and consists of simple eigenvalues given by

\j(,;0,00 = sgr(j)(|x[- 3+ i), | e Z\{0} (7)

(for the details we refer to Appendix)AThis means, in particular, th#(«;0,0) has compact
resolvent, and from Theorem 2.4 in Kat®@966, Chap. V, 8Rit follows that A(x;u,v) has
compact resolvent for allu, v) € C2. As a consequence, the spectrumok; i, v), (u,v) € C?, is
discrete, and sincA(«; u,v) is in the limit point case at=0 and =, its spectrum consists of
simple eigenvalues fdu, v) € R Now, Theorem 3.9 in Kat¢1966, Chap. V, §8implies that the
eigenvalues\;=\j(x; u,v), j € Z\{0}, of A(x;u,v) are simple and depend holomorphically on
(u,v) in a complex neighborhood dt?. Moreover, the partial derivatives @ with respect tou
and v are given by

aA_(—cos& O) aA_( 0 —sina)
dmw \ 0 cos@) v \-sine 0 )

which yields the following estimates for the growth rate of the eigenvalues, compard 146,
Chap. VII, 83, Sec. #

aum au v v

Here ||| denotes the operator norm of(2x 2) matrix. In addition, by Theorem 4.10 in Kato
(1966, Chap. V, 88 we have

, ”}{{%}P\ = \j(;0,0)| < [T(, v)|| < max{|ul,|v]} (8)
jeZ

for each eigenvalug of A(x; u,v). Finally, by interchanging the components&#), we obtain
that a point\ is an eigenvalue of(«x; u,v) if and only if -\ is an eigenvalue oA(-k;u,-v).
Since the eigenvalues depend holomorphicallyuoand v, the identity
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N (s, v) = = A= ko, = v)
holds for all (x,») in a neighborhood of2. Therefore, we restrict our attention to the case

Ke [%,oo). Note that\ e C is an eigenvalue ofA(k;u,v) if and only if the system(5) has a
nontrivial solutionS(6) satisfying

f S(0)[* d6 < 0. 9)
0
By means of the transformation
0
tan- 0 ;
S(0) = 5 y<sin2§>, ¢ € (0,m), (10
0 \/cot=
2
the differential equatiori5) is equivalent to the system
"(x) = FB +LB +C} (x) (11)
y (X)= ot b Yy
on the interval(0, 1) with coefficient matrices
_k 1 .1y
2 a4 M 2" 4 —2v -2u
BO - ’ Bl = ’ = ’ (12)
k 1 k 1 2u  2v
0 —+- H=—N —— ==
2 4 2 4
and the normalization conditiof®) becomes
I
ool 1-x
y(x) y(x)dx < co. (13
0 1
0 —
X

If we consider the differential equatigfl) for a fixed« e (0,%) in the complex plane, then it has
two regular singular points, one at0 and one ak=1 with characteristic values[txlz)+;11].
From the theory of asymptotic expansioigee Wasow(1965, for examplé, it follows that for
each\ e C there exists a nontrivial solution

Yo, N) = X2 AR (x \),  x e B, (14)

of (11) in the open unit diskB,C C with center 0, whereh(- ,\\):B,— C? is a holomorphic
function,

” -\
h(x\) = 2 Xy(V), () = (“ B ) . (15)
n=0 K+

2

Herehgy(\) is an eigenvector oB, for the eigenvaluéx/2)+l, and the coefficienth,(\), n>1,
are uniquely determined by the recurrence relation

(Bo—a=nhy(A) =(By+B; ~C+1-a-nh,,(\) +Chy,(\) (16)

with a:= (K/2)+% andh_;(\):=0. Since the matriceB, andB,; depend holomorphically on, the
coefficientsh,,: C— C? are holomorphic functions. By slightly modifying the proof of Theorem 5.3
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in Wasow (1965, it can be shown that the seri¢$5) converges uniformly in every compact
subset ofB,Xx C. Thus, by a theorem of Weierstrass,B,Xx C—(C? is a holomorphic vector
function in the variable$x,\). Now, let

1 f(\)
h(?‘) - (g(x) )

and we define the holomorphic functidat C— C by

AN = f(N2-gV)?% N eC. (17)

The following lemma provides a connection between the eigenvaluésaod the zeros oA.
Lemma 1: For fixedc e %,OO) and(u,v) € C?, a point\ e C is an eigenvalue of &; u, v) if
and only ifA is a zero of the functiod given by (17) This is equivalent to the statement that the

differential equation (11) has a nontrivial solution of the form

y(x) =[x(1 =020, x e C\{0,1}, (18)

where 7:C—(C? is an entire vector function. As a consequence, if S is an eigenfunction of
A(k; u,v) for some eigenvalug, then

|S(6)|<Csinc 6, 6e(0,m), (19

with some constant € 0.
Proof. Defining

K-—(O 1) 20
“\1 0/ (20)

we haveK 1=K andKByK=B;, KCK=-C. Hence,y is a solution of the systerll) if and only
if the functionKy(1-x) satisfies(11). In particular,y,(x) := Kyg(1-x) is a solution of(11) in the
unit disk 2%, C C with center 1, and/;, has the form

ya(X,\) = (1 =x) W2 AKh(1 - x,\), X e B.

Moreover, by the Levinson theorem, see Eastid®B9, Theorem 1.3)1 any solution of(11)
which is linearly independent of, in (0,1) behaves asymptotically like =14 y,+0(1)] as
x— 0, wherev is an eigenvector oB, for the eigenvalue 6;</2)—;11. Similarly, any solution of
(11) which is linearly independent o, in (0,1) has the asymptotic behavigr—1)~(<2-1/4
X[v,+0(1)] asx— 1 with an eigenvectop, of B, for the eigenvalue 6</2)—;11. Now, if X is an
eigenvalue ofA(k; u,v), then the systenill) has a nontrivial solutiory satisfying(13), and it
follows thaty(x)=y.(x,\)c, holds in(0,1) with some constants, € C\{0}, ae{0,1}. Thus,y,
andy, are linearly dependent, and the Wronski&ix, \) := det(yy(X,\),y1(X,\)) vanishes iden-
tically for all xe (0,1). In particular, 032, \)=2"<"Y2A(\). Conversely, if A(\)=0, then
\N(%,)\):O, which implies that, andy; are linearly dependent. Henogy(x) =y;(x)c with some
constantc e C\{0}, and thereforey, is a solution of(11) satisfying the condition(13) on the
interval (0,1). Moreover, we immediately obtain thgg has the form(18) with a holomorphic
vector functionz:B,U B, — €2, and sincg11) is regular inC\{0, 1}, we can extend;: C— (2 to
an entire function by the existence and uniqueness theorem. Finally, by means of the transforma-
tion (10), an eigenfunctiors of A(k;u,v) has to be a constant multiple of
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.0
smé 0 0
sin @ p 77<Sir‘|2§>, e (0,m)),
0 cosé

and this yields the estimaté9). O
Lemma 2: For fixedk e [5,%) and je Z\{0}, the jth eigenvalue\j(x;u,v) of A(x; u,v) has
a power series expansion of the form

[}

Nk )= 20 Annt™", Moo= \i(k;0,0), (21)

m,n=0

which is uniformly convergent in the polydis={(x,») e C?:|u|,|v|<%}. Moreover, for all
integers m and nthe following estimate holds:

|)\m,n| = (|K| + |j|)2n+m_ (22

Proof. Since the coefficient matrices {fi1) depend holomorphically of\, u, v) € C2, we can
modify Theorem 5.3 in WasoL965 appropriately in order to obtain thhtin (14) and therefore
A=A(\,u,v) as given by(17) are holomorphic functions ofi®. By a similar reasoning as in the
proof of Lemma 1, we can show that for fixéd, v) € C? the eigenvalues oA(x; u,v) coincide
with the zeros of the function— A(\, u, v). In particular for the caséu, v) € R? these zeros are
simple becauseA(k;u,rv) has only simple eigenvalues. Hence, by solving the equation
A(N,u,v)=0 and using the implicit function theorem, an eigenvalyec; u,v) of the operator
A(k; u,v) depends holomorphically ofu, ») in a complex neighborhood @f2. Furthermore, the
estimate(8) implies that the se{\ e C:min;.o|\—\j(x;0,0|=3} contains no eigenvalues of
A(x;u,v) for all (u,v) e €. Thus there exists a holomorphic solutian€ — C of the equation
A(\, 1, v)=0, which is uniquely determined by(0,0)=\;(«x;0,0). Consequently\j(x; u,v) is
holomorphic ing, and therefore it has a power series expansiah d@fi the form(21). In addition,
by Cauchy’s formula,

1 Nj(x; e, v)
- i Al ond R
Am,n_ 4772§7¢ Mm+1Vn+1 dM dv,

and applying(8) and(7), it follows that

Nk )| < [Nj(;0,0)] + max| ], [ v} < | + ]

which gives the estimat@?2). O
According to Lemma 1, for fixed parameteig,v) € C? the eigenvalues ofA(k;u,v) are
exactly the zeros of the functioA(\) given by (17). In principle, this result can be used for

numerical computation of the eigenvalues. However, in order to calchl@g at some point
\ e C, we first have to determine the coefficiehtg\) with the help of the recurrence relati¢h6)
and subsequently we need to evaluate \) atx:% by means of the power series expangib).
Unfortunately, this method requires the calculation of two consecutive limits, making things rather
complicated. In the remaining part of this section we show that there is yet another fu@ction
which encodes the eigenvaluesAtfx; «,v). The main advantage @ is, that it can be obtained
by only one limit process.

By settingy(x) := x*(1-x)1"*¥y(x) with a:=(;</2)+%1, the system(11) becomes

SO [ P S
y(x)-{x o+x_1sl+c}y<x> (29

with the coefficient matrices
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é02:<_K_% M_)\>, él::<K_%— O), C:<_2V _2M>
0 0 u—N -1 2u  2v

Now, there exists a holomorphic solution @3) in 9B, given by

” -\
JoN = D X0, dol) == (“ ;). (24)
n=0

K+5

wheredy(\) is an eigenvector oéo for the eigenvalue 0. In addition, the coefficiemtg\), n
> 1, are uniquely determined by the recurrence relation

dy(\) = (Bo = N)[(E ~ n)dy_y(\) + Cchy ()]
with

2v 3u-—A\
= y d_l()\) = 0
-u-N —-2v
Finally, we denote byd,(\) the second component df(\).
Lemma 3: Lekk [1,00) and (u, v) e C? be fixed Then, for each\ e C, the limit

O\) = lim O,(\) (25)
n—oe

exists, and®:C—C is a holomorphic function. Moreover, a pointe C is an eigenvalue of
A(x; u,v) if and only if ®@(\)=0.

Proof: For fixed\ e C, the differential equatio23) has a regular singular point &t 1 with
characteristic values —1 ane-3. First, let us assume that their differenee is not an integer.
In this case the syste23) has a fundamental system of solutions in a complex neighborhood of
x=1, which can be written as

J1¢0) = (1 =X (1 -x)"dEN),  To(x,N) = (1 =x)V2 (1 -x)"dA(N), (26)
n=0 n=0

where

1
déw:(f):ez, d%(Mz(”z)
-

N

are eigenvectors (ﬁl for the eigenvalues -1 and-32, respectively. Nowy can be written as a
linear combination

YN = i)Y GN) + 72N F(X,N)

with connection coefficientg;(N), y>(\) € C. Applying Corollary 1.6 in Schafke and Schmidt
(1980 to the systen(23) gives

lim d,(\) = y1(\)e,, (27)

and therefore the limit25) exists. Furthermore) is an eigenvalue of(k;w,v) if and only if
v1(A\)=0, i.e., if and only if®(\) becomes zero. Finally, it can be shown that the functidps
converge uniformly in every compact subset(pfand Weierstrass’ theorem implies tHtis an
entire function.

Now, suppose thak:= K+% is a positive integer. In this case, a fundamental system of the
form (26) may not exist. Nevertheless, it can be proyege Lemma 6 in Sec. Ythat the system
(23) has a fundamental matrix,
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[

YO,N) = GV Ha(W(1 =x)"(1 =x)P(1 =x)",
n=0

in a complex neighborhood of=1, whereD :=diag-1,k-1), Hy(\)=I, and

Gm_(o K+§> J()\)_( 0 o)
1 pu-n/ “\gn) 0

with someq(\) e C. In particular, we can writ in the form

YO = HOOO(L =3, FN) =D (1-%"D,(\),
n=0

where

D (x)—(o 0) ﬁ(x)—(_l 0 )
o m\1 o) “\gn) -1/
Sincey solves the syster23), there exists a vectar(\) e C? such thatgl(x,)\)=\?(x,7\)c()\), and
Theorem 1.1 in Schafkel980 implies

1 ~ 1 ~
dn(X) = Do(M) Z (= JANT(n+ 1) (n = IA))e(h) + o(n”% (28)

for arbitrary 5> 0. For the definition and discussion of the reciprocal gamma function for matrices
we refer to the Appendix in Schafk@980. Particularly, for the Jordan-type matriced(x) and
n—-J(\) we obtain

1
1, ~ . (10) 1 ~  [T(n+1)
r( JO\))—(* 1>, F(n JIN) = ) 1
I'n+1)
Now, if y1(\) denotes the first component ), then(28) implies(27). Since\ is an eigenvalue
of A(k;u,v) if and only if y,(\)=0, the proof of Lemma 3 is complete. O

Ill. A PARTIAL DIFFERENTIAL EQUATION FOR THE EIGENVALUES

Theorem 1: For fixed x e [3,2) and je Z\{0}, the jth eigenvalue.=\(x;u,v) of A is an
analytical function in(u, v) € R? satisfying the first order quasilinear partial differential equation

(,LL—ZV)\)Q'F(V—ZU,)\)Q+2K,LL+2,LLV: 0, (29
au v
where\;(«;0,0) is given by(7).
Proof: Let
. Sl(e)>
S(0) = (SZ(G) , 0e(0,m),

be that eigenfunction oA(«; u,v) for the eigenvalue\=\;(«; u,v) which is normalized by the
condition(S,S)=1. Introducing the functions
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U(0) = Si(0)*+ S,(0)%,  V(0) == S)(0)* - S1(0)%, WI(6) := 25,(0)S,(),

a straightforward calculation shows that V, andW are solutions of the system of differential
equations

u'(6) = 2<V sin 6+ Sig H)V(e) + 21 cOS OW(6), (30)
V’(G):2<vsin 0+$K0>U(0)+2>\W(0), (32)
W (6) = 2u cos 8U(6) — 2\V(6). (32

Now, from analytic perturbation theory, compare K&l®66, Chap. VII, 83, Sec.)4it follows
that

Q:(a—Ags)szs(e)*<_cose 0 )S(a)daszcosav(a)de, (33
du \du 0 0 cos o 0

@—(‘;—Ass>=f3(0)*< 0 _Sma)S(B)dH:—stin oo, (34)
v 0

v -sing 0 0

In addition, from(19) we obtain the estimates

[U(O)LIV(O)],IW(6)| < C sirP

with some constan€>0. Sincek is positive,U, V, and W vanish atd=0 and 6=. If we
integrate(33) by parts and replace’(6) with the right-hand sidérhs) of (31), then we get

(9)\ o o
a—:—f sin HV’(G)daz—f (2v sir 6+ 2k)U(6) + 2\ sin OW(6)do
M 0 0

ko

=—(2v+ 2K)fWU((9)d0—2)\fﬂSin MW(6)d6 + ZVJ cog AU(6)de6.
0 0 0

Taking into account that

aa o (9)\
f u(e)do=(59 =1, J sin OW(0)do=—- —,
0 0 Jv
we have
AN AN .
u— == uRv+2k) + 2uN—+ 2,uvf cog 6U(6)d6. (35)
a/.L Jdv 0

Moreover, Eq(32) implies

2u cog AU(6) = cos OW' (6) + 2\ cos V(6),

and integration by parts gives
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ko ko

cos OW' (0)do + 2v)\f cosOV(0)do
0

ZWF cos gU(6)do= vf

0 0

g N N
cosoV(6)do= - Va_ +2vA—. (36)
14

= vf sin OW(0)do + 21/)\[
2y

0 0
Replacing the last term on the rhs (5) with (36), we obtain exactly the partial differential
equation(29). O

The PDE(29) can be used in order to derive a power series expansiok farth respect to
w and v. For this purpose we introduce the new coordinates,

a=v—u, PB:=v+u,

compare Sufferet al. (1983. Then)A\(a,,G') =\j(k;(B-a)/2,(B+a)/2) is a solution of the trans-
formed partial differential equation

CON L m AL,
a(1+2>\)&a+,8(1 2)\)3,8_'((“ B)+2( B9, (37)

wheref\(O,O):)\j(K; 0,0 is given by(7). As\ depends analytically ofw, 8), there exists a series
expansion fon of the form

Na,B)= 2 cnna™B" (38)

m,n=0

(for clarity, the indices« andj in the coefficients,,, and in the function\ have been omitted
Furthermore(37) is equivalent to

N IN2 IN N2 _ 1, »
g Gl Gy e, >

and since

)’;(a,B)Z: 2 (2 2 Cr,scm-r,n-s> amgh,

m,n=0 \r=0 s=0

we obtain the identity

E ((m+ n)Cm,n +(m- n)z E Cr,scm—r,n—s> aman =k(a—-p)+ %—(a’z - BZ)

m,n=0 r=0 s=0

Comparing the terms of equal order anand g, it follows that

K

Co,0=\j(x;0,0) =: ¢y, Cy1 et
0

2c,+1" Ot

_(2cp+ 1)% - 4k?

. _(2cp— 1)% - 4k?
207 4(2c,+ 1)°

, C11=0, cpo= ,
L 027 4(2¢,-1)3

and form+n> 2 the coefficients,, , satisfy
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(M+n) +2c(M=N)Crp=(N=M) > ¢ Corn-ss (40)
(r,s) e[m,n]
where[m, n] denotes the set of all pai(s,s) € 72 with 0<r<m, 0O<s<nand 0<r+s<m+n. In
particular, ifm=n>0, then we get & ¢,,=0, which implies

n=0 foralln>0. (41

Moreover, if x is not a rational number, i.ex.e [ %, ) ©)\(), then the initial value, is not a rational
number, and we havém+n)+2c,(m-n)#0 for all (m,n) e Z? with m+n>2. In this casg40)
gives a recurrence formula for all coefficients of the power series expa(&dpn

Now, suppose thak e [%,%)N(). Thenc, is a rational number withc,| =1, and we get
(2co—1)/(2cy+1)=p/q with some coprime integens andg. Now, the prefactor on the left-hand
side(lhs) of (40) becomes zero if and only th=€p, n=€q with some positive integef, and thus
the coefficientsc,, ¢ are not determined by0). However, we can by-pass this problem if we
regardx as an additional parameter in our eigenvalue problem. Since the coefficient matiy of
depends holomorphically ore C*:={ze C:Rez>0} and (\,u,v) € C3, we obtain in a similar
way as described in Sec. | thatin (14) and thereforeA=A(k;\;u,v) given by (17) is a
holomorphic function om* X (2, Moreover, in the same way as in the proof of Lemma 1, we can
show that for fixedc € L5 L ) and(u,v) e C?the elgenvalues oA(k; i, v) coincide with the zeros
of the functlom\HA(K N;u,v). In the casdk,u,v) e «) X R2 these zeros are simple, since
A(k;u,v) has only simple eigenvalues. Hence, by solving the equatiér;\;u,v)=0,
we find that an e|genvalu)e («; u,v) is a holomorphic function in a complex neighborhood of

») X R2. In partlcular)\ depends holomorphically dx; a, 8), and for a giverx e [2 ,), there
eX|sts a power series expansion of the form

o)

)A\(K+£;a,,8): > C<l)n8amﬂ”

I,m,n=0

in a neighborhood ofx,0,0). In the following we derive a recurrence relation for the coefficients
ng),n' Since

)A\(K"'S;ayﬂ)z: E (Ezzc(tcgy—tr)n s) Iamﬁn’

I,mn=0 \t=0 r=0 s=0

from (39) it follows that

© I m
> <<m+n>c52n+<m—n)22Ec“)c(n':ms) 'am/s"=f<(a—ﬁ>+s(a—ﬂ>+§<a2—ﬁ2>.

I,mn=0 t=0 r=0 s=0

(42)

Moreover,(7) implies that

1a' sgrj)(k—2+]j]), if1=0,
O RO
Co,0= P —(x;0,00 =ysgn(j), ifl=1
0, ifl>1.

Comparing the terms of equal order (#2), we obtain

cO =\.(x;0,0) =2 co, )= , Co= T,
oo (K ) 0 1,0 20+ 1 0,1 2co- 1
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0 (20+1)*-4x>

©o_ (2-17-4«
2,0 4(2C0+ 1)3 ’ 1,1 -

=0, ¢ ,
027 4(2c-1)°

2co— 1 -2 sgitj)«
(2c- 1) ,

(1) _2C+1-2 sgitj) k
Lo (2co+1)?

1 -
c61=

while the remaining coefficients are determined by the identity

(m+n) +2c(m-n)ch +(m-n > Ot =0, l+m+n>2. (43)

(t,r,9) e[l,m,n]
Here[[l,m,n] denotes the set of all triple$,r,s) € 73 with 0<t<I, O<r<m, O<s<n, and 0
<t+r+s<I+m+n. In the cas€m+n)+2c,(m-n)=0, the prefactor of;ﬂ{n in (43) vanishes, and
sincem—-n=+ 0, we get forl >0
0= 3 i caiehte 3 il (44

m-r,n—-s m,n m-r,n-s?
(tr.s)ell,mn] (tr,s ell,mn]’

where[l,m,n]":=[1,m,n]\{(1,0,0,(I-1,m,n)}. Now, for all coefficientsch'])’n with [+m+n>2,
(43) implies

0 - n-m ® -0 ;
Cpn= C, C . if (m+n)+2c,(m-n)#0,
MO (M+n) + 2co(m-n) (t,r,s)%n,m,n]] tCmorn-s If (M+N) +2¢(m—n)

whereag(44) andcjy=sgr(j) yield

sgn(j) >

> cllcty if (m+n)+2c(m-n)=0andl >1.

(1-1) — _
Cm,n - m-r,n—-s

tr,9ell,m, n]]*

(0)

These recurrence relations can be used to determine all the coefficigrs,

series expansio(B8) in the case thak is a rational number.

Remark 1: A series expansion for the eigenvaluagith respect to «, 8) has been given by
Suffern et al. (1983, Sec. 8), however, only the coefficigptswith m+n<5 have been deter-
mined. Furthermore, Kalnins and Miller (1992) studied a series expansioB,_, \,a" for the
eigenvalues in terms of the Kerr parameter a, but also in this paper only a finite nhumber of
coefficients\g, ... A3 have been explicitly computed. A general recurrence relation for the coef-
ficients of (38) could not be found in the literature. Moreover, the problem of dividing by humbers
which may be zero has not been noticed in Suffern et al. (1983) and Kalnins and Miller (1992).
Finally, it should be noted that some of the diagonal entriggfor n>0 in Suffern et al. (1983,
Table 1) are not equal to zero, in contrast to our result (41).

of the power

IV. SOLUTION OF THE PDE BY THE METHOD OF CHARACTERISTICS

In this section the PDE29) for real parameteréu, v) € R? and fixedk e [% ,o) is studied by
the method of characteristics. In particular, we obtain an exact formula for the eigenvalues in the
case|u|=|v|, and for|u| # |7, it turns out that the characteristic equations can be reduced to the
third Painlevé equation.

Theorem 2: Let ke [%,00), j € Z\{0} and 7 {-1, +1} be fixed. Then

2
NGk ) = +sgr(j)\/ <m<f<;o,0) —g) + 2riu+ i, (45)
Where)\j(x;0,0):sgr(j)(:<—%+|j|). In particular, if j=7, then

Ny T) = T(K + 5) + e
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Proof: According to Theorem 1, the function(u, v):= \j(«; u, v) solves the partial differen-
tial equation(29). Definingw(w) :==\(u, 1), n € R, for some fixedre {-1, + 1}, we obtain

dN 72N
W () = ——(p, ) + 7 (1, a0,
au v
and with the help of29) it can be shown that

W () = 2TW()W' () = = 26 = 272
Dividing the above differential equation byrz and integrating gives

2
(W(,u,)—g) =CH+2rku+u?, peR, (46)

where the constant of integratid@his uniquely determined by

2 2
= (W(O)—%) = <)\j(K;0,0) —é) .

Now, from (46) it follows that

T T 2
W(,LL)=§+8\/<)\]-(K;O,O)—§> + 27K + u? (47

with somes € {-1, + 1} and the square root assumed to be non-negative. We have to take the sign
of & such that the |hs of47) is analytic and coincides with;(«;0,0) at the pointu=0. If j=7,
then\(«;0,0= Ar+l ) and(47) impliesw(w) = (T/2)+s(w<+,u) Insertingu=0, it follows that

e=1, i.e., w(u)= 7‘(K+ )+,u In the casej # 7 we have|\(«;0,0)~(7/2)|=«+1 and thus the
radicand in(47) is positive for allu € R. Moreover, by means of

2
\j(x;0,0 =w(0) :£+ £ ()\j(K;0,0) - %) :%+8

and(7), we gete=sgr(\j(x;0,0)-(7/2))=sgr(j), which completes the proof. O

Remark 2: For a given half-integek and u=w, this result has been shown by Suffern,
Fackerell, and Cosgrove using a power series expansion for the eigenfunctions of (1) and (2) in
terms of hypergeometric functions, see Suffern et al. (1983, Secs. 3-5). Here, we obtained the
formula for \j(«; u, £1) as an immediate consequence of the partial differential equation (29).
Moreover, it should be noted that the formula (54) in Chakrabarti (1984) is not correct.

Now, let us consider the cage|#|v|. To this purpose, we introduce new coordinates
(t,v) € (0,0) X (R\{0}) by

xj(K;o,O)—g‘

t
w(tv)== <v+ ), v(t,v) == (v—g) (48)
v v
with some fixedo € {~1, +1} [note thato=+1 corresponds to the casgs| >|v| and |u| <|v|,

respectively; moreover, this transformation mapsconst onto lines in théu, v)-plane starting at
the origin, while the curvets=const are mapped onto hyperbgdldBy settingw(t,v)=\(u, v), we

have
AW 1( )ax 1( )ax 1( I\ ax)
—==|lv+—|—+=|v-— u— +v—
it 2 dp 2 dv t\' dp dv
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ow t ag\dn t og\dN 1 N 2N
—=1-5 | —+z|\l+5 | —==(v—+p—|,
dv 2 vi)op 2 v/dv v\ Ju dv

and(29) becomes

Jw  2vwWdiw o tf, 1
— - +klv+—|+_|v°-—|=0. (49

at t dou v 2 v

The characteristic equations of this PDE are given by
2vu(t)w(t
v’(t)=—w, (50)
(o t 1

"O==-xlo®)+—|-= t2——). 51
w'(t) K(v() v(t)) 2(v() (02 (52)

From (50) we obtain thatw(t)=-tv’(t)/2v(t), and(51) implies
V() ') () _ ( L) 3( 2_i>
2000 " 2000 " 202 - VPO o) T2\ )

Multiplying the above differential equation withv2)?, we get the following third Painlevé equa-
tion:

tov” = t(v')?+vv’ - 2k(v?+ o)v — t(v* - 1) =0, (52

with parametersa=oB=2« and y=-56=1 [see Milneet al. (1997 or Mansfield and Webster
(1998), for examplé. For further details on the Painlevé Ill we refer to, e.g., Mc@bwl. (1977),
Widom (2000, and Iwasakiet al. (1991).

In general, Painlevé Il is not solvable in terms of elementary functions, and therefore we
cannot expect a closed expression for the eigenvaluégafu,v) in the casdu| # |v|. On the
other hand, for particular values &fthere exist so-called special integrals of polynomial type for
this equation, i.e., polynomial® in t, v, andv’ with the property that every solution of the
differential equatiorQ(t,v,v’)=0 satisfieg52). As it will be shown below, such special integrals
are related to algebraic solutions of the P[28), i.e., solutions, which are zeros of a polynomial
in A with rational coefficients inu and v. Moreover, taking into account that the eigenvalues
Nj(r; i), Te{-1,1}, of A(k; u, 7ie) satisfy the quadratic equation

2 2
T\ 5 _ T
(7\—§> =C+27kp+ u” with C:= ()\j(K,0,0)—E) ,

the question arises if such an algebraic expression for the eigenvaléésof, v) exists in the
case|u| # |v]. Afirst step towards the answer of this problem is given by the next lemma.
Lemma 4: Suppose that there exists a polynomial

N

POV, v) = 2 Po(s, wAY, Py=1,
n=0

of degree N>0 in A with rational coefficients Rin u and » such that the zeros;@,v), |
=1,... N, of P(-;u,v) are simple, and that the functions=z; are solutions of the partial differ-
ential equation(29). Then « is a half-integer. Moreover, if N1 or N=2, then K=% and
POV, v) =N+ ).

Proof: Let Q(t,v ,v')=2,’:|:0 Qn(t,v)(®")" be the polynomial iy’ with coefficients
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2v

N-n
Qu(tv) = (— T) P.(u(t,v),v(t,v)), n=0,... N,

whereu(t,v) and »(t,v) are given by(48). Note that theQ, are again rational functions inand
v. Moreover, letv:® — R\{0} be any solution of the first order ODB(t,v,v')=0 on some
interval ® C R\{0}. For the function

w(t) =— tzvv((:)), te®, (53)
we obtain
N n N
0=Qto(),0' (1) =S, Qna,v(t))(—w) :(—2”7(”> PW(); u(t, (), vt (D),
n=0

and thusw(t) is a zero ofP(-; u(t,v(t)), »(t,v(t))) for eacht e ©. Since the zeros of this polyno-
mial depend analytically on the paramete@ccording to the implicit function theorem, there exists
an indexj e {1,... N} such thatw(t)=z(u(t,v(t)), v(t,v(t))) for all te®. Furthermore, ag;
solves the PDE29), it follows that(t,v(t),w(t)), t € ©, is a characteristic curve ¢49), and thus

v is a solution of(52). Hence,Q(t,v,v')=0 implies(52), and therefore is a special integral of
rational type for this Painlevé Ill. Multiplyin@(t,v,v’) by an appropriate polynomialt,v) in t
andv, we obtain that the functio®(t,v,v’):=r(t,v)Q(t,v,v’) is a special integral of polynomial
type of degreeN with respect ta’. Now, Theorem 2 in Mansfield and Webst&098 yields that
such a special integral exists if and only ik220x=2(2k-1) with some integerk, i.e.,
K:k_% is a half-integer. In addition, by Lemma 3 in Mansfield and Webgl&©8), the relation
(6g—p)x=N must be satisfied for some integepsg e {-N,-N+2,... N-2,N}. In the case
N=1 orN=2, these conditions imply:%, and the corresponding special integrals of polynomial
type are explicitly known, namelg(t)vS(v’ +v?+ )N, wherer is some polynomial int, ands is an
integer, compare Sec. Il in Mansfield and Webg998. Hence,Q(t,v,v’)=(v' +v?+0o)N and

N
PW(D); e, 0(0), vt (1) = (— ﬁ) QUt.w()) = W) + u((Lo®)Y, teD,
which yieldsP(\; i, v)=(A+u)N if N=1 or N=2. O

As a consequence of this lemma, if a solutidix, v) of the PDE(29) is a zero of a linear or
quadratic polynomial with rational coefficients inand v, thenK:§ and\(u,v)=—u. In fact, the
function \(u, v)=—u solves(29) for k=3, but sincex(0,0=0 and the spectrum d&(3;0,0) is
given byZ\{0}, it is not an eigenvalue o&(%;,u, v) for any (u,v) e R2 The following consider-
ations show that this solution is nevertheless of interest.

V. MONODROMY EIGENVALUES

In this section we consider the case tais a positive half-integer, i.eK:k—% with some
positive integelk, and we assume that the matfixdefined in(12) has distinct eigenvalues, i.e.,
u?# 12, For suchk and(u, v) there is in addition to the classical eigenvalueé\o#; u, v) another
type of “special values” which we call monodromy eigenvalues. In order to introduce this concept,
we first recall the characterization of eigenvalues according to Lemma 1: A pagan eigen-
value of A(x; u,v) if and only if the systen{11) has a nontrivial solution of the form

y(x) = [X(1 =x) ]2 p(x), (54)

where 7:C— (2 is an entire vector function. Now, as the difference of the characteristic values
i[(x/2)+i] at 0 and 1 is an integer, the differential equati@h) has a fundamental matrix of the
form
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Y(x) =[x(1 —x)]"“27 4 (x), (55

where H(x)=H,(x)(x—a)= holds in B, aec{0,1, with some holomorphic function
H.:98,— M,(C) and a Jordan matrid,, see Theorem 5.6 in Waso@965. Hence, the matrix
function H is in general not holomorphic if8,U 9B, since it involves logarithmic terms. In the
following, a point\ e C is calledmonodromy eigenvaluef A(k;u,v) if and only if the system
(11) has a fundamental matrix of the for(g5) with the property thaH:C— M,(C) is an entire
matrix function. Monodromy eigenvalues are characterized by the following lemma.

Lemma 5: For a given half-integex>0 and (u,v) € C? with u?+# 1%, a pointA eC is a
monodromy eigenvalue of(A; w, v) if and only if the system (11) has a nontrivial solution of the
form

[X(1 —x)] <2~ ap(x)e?, (56)

where pC— (2 is a polynomial vector function andet: 12— u?.
Proof: By means of the transformatigrix) =x%(1 —x)*y(x) with a:= (K/2)+%1, the differential
equation(1l) is equivalent to the system

- 1~ 1 ~ -
y'(x) = [)‘(Bo + leBl + C] y(X), (57
where
~ 0 u—-A ~ k 0
B°_<o k ) Bl_(,u—)\ o)' 8

Now, if \ is a monodromy eigenvalue &(«;u,v), then the systeni57) has a holomorphic
fundamental matrix : C— M,(C). Since the coefficient matrix @67) is a rational matrix function
which is bounded at infinity, an extension of Halphen’s theorem, see Theorem 2.4 in Gedztesy
al. (2000, implies that the systert67) has a fundamental matrix of the forR{x)e®* with some
rational matrix functionR and D :=diag(-2t, 2t) (note that +2 are the eigenvalues @&). More-
over, R(x)eP*=H(x)Q with some invertible matriXQ, and therefordr(x)=H(x)Qe®X is an entire
matrix function inC. This implies thaR: C— M,(C) is a polynomial. Vice versa, suppose that the
system(11) has a nontrivial solutioy(x)=[x(1-x)]"*p(x)e’> with some polynomial vector func-
tion p:C— C2. Defining

V() = € 2Ky(1 —x) =[x(1 -x)]*Kp(1 - x)e"**

with K given by (20), it follows thaty is a solution of(11) which is linearly independent of.
Therefore,(11) has a fundamental matrix of the ty(¥85), whereH is the entire matrix function
H(x) = (p(x)€2%, Kp(1 -x)e™2X). O

Theorem 3: For fixed KZK—% with a positive integer k there exists a polynomi#ékP\ ; u, v)
of degree2k—1 in \ with polynomial coefficients i and v such that for eacliu, v) e C? with
u?# 17 a point A e C is a monodromy eigenvalue of(#& u,v) if and only if \ is a zero of
P(«x; - ;u,v). Moreover, the integeré -k, ... k=1 are the zeros of &;-;0,0, and fOI‘K:% we
obtain F2;\;u, v)=\+u.

Proof: A point \ is a monodromy eigenvalue &(«;u,v) if and only if the differential

equation(57) has a nontrivial solutiomp(x)e?, wherep(x)=3N_, p,x", py#0, is a polynomial

vector function, and= +\1?- u2. In the following we assume=\»?- u? (the main branch of the
square rootbut all considerations remain valid if we replaceith —t. If we setA:=\-u and
C:=C-t, then the polynomiap satisfies the differential equation
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1~ 1 ~ ~
'"X)=| -By+ ——B;+C , 59
p'(x) [X 0t "1 ]p(x) (59
where the coefficient matrices take the form
E—(O —A) E_(k o) 6_(—zy—zt —2M>
°“\o k /0 *"\-A o) T\ 2u  2v-2t)

It is easy to see that the coefficiergise €2, n=0, ... N, form a nontrivial solution of the linear
system of equations

~Bop0=0, (Eo—l)p1+§p020, (60
(Bo—n)p,+(S+n-1)p,.1—Cp,,=0 (n=2,... N), (61)
(S+N)py—Cpy-1=0, -Cpy=0, (62)

where

-2v-2t-k —2,u+A>
2u+A  2v-2t—-k/

Multiplying the first equation in(62) from the left with the matrixC+4t and observing that
(C+4t)C=0, we get

0=(C+4t)(S+N)py= ( A N k)EIpN + 4t(N = K)py = 4t(N = K)py.

Sincet # 0 andpy # 0, it follows thatN=k. Due to technical reasons we must distinguish between
the casek=2 andk=1. We will proceed at first with a detailed proof for the more complicated
casek= 2. Adding the second equation (62) to the first one and then both equationq &) to

(61) for n=N, we obtain

Bopo=0, (Bo—1)p;+Spp=0, (63)
(Bo= )P+ (S+n=1)py1-Cpp=0 (n=2,...k-1), (64)

~ -1 A ~

= Bip+ A 1 Pi-1~ CPi2=0, (65)

0 A - -

A O Pk=Cpx-1=0, —Cpc=0. (66)

The system above consists k26 linear equations for 2 unknowns. In the following we
prove that only R+2 of these equations are Ilnearly independent. Summation of all equations

(60)«(62) yields —812 -oPh=0. Because of ran{Bl) 1, it is possible to eliminate the second line

of the first equation i{65) by means of line transformations, and since also l(aak— 1, we can
delete the first line of the first equation {63). Thus, the systeni63)—(66) consists of at most
2k+4 linearly independent equations. In order to reduce the equat@@)sfurther, we must
consider the cases-t+#0 andv—t=0 separately. First, let us assume that # 0. Multiplying
the equations if66) from the left by the invertible matrix
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~t
(7504
0 1

it follows that (66) is equivalent to

(oo) (o o) o (o o)_o 67
A 0P \op 22t JPrTP oy 0ot /T

Now, we can represent the system of the linear equati68s+(65), (67) as a matrix equation
I'P=0 with P=(py, ... ,.pW) € C**2 and the(2k+2) X (2k+2) matrix

S |By-1| O 0
-C | S+1|By-21| O
_ 0 | -=C | S+21| By-3I 0
T := . . . )
O | s 0 -C | S+k=2) | By— (k=11 0
0 0 0 0 [2v+2f 2u | -1 A -k 0
0 0 00 0 0 |-2um 2t-2v| A 0
0 0 00 0 0] 0 0 |-2u 2t-2v

LetT be the(2k+1) X (2k+ 1)-matrix obtained froml’ by deleting the last row and column. Then
\ is @ monodromy eigenvalue &f(«; u,v) if and only if 0=detl’=(2t-2v)detI’, i.e., detl’=0
sincev—t# 0. Now, suppose that-t=0. We will prove that also in this caseis a monodromy

eigenvalue if and only if delf =0. Note that=t implies =0, and therefore the equations(66)
are equivalent to

(o A) +<4t o) 0 (—4t o) 0 68
Aopk Oopk—1_1 Oopk—-

If N\ is a monodromy eigenvalue &(k;u,v), then the vectop=(py,...,ps) iS a nontrivial
solution of the matrix equatioﬁTozo even thougtT is not invertible forv-t=0. If we assume
detfaﬁo, it follows that A # 0 and the first R+1 components op must be zero. In particular,
p;=---=px-1=0, and the first equation if68) yields p,=0. Thusp=0, and this contradiction
implies detl’=0. Conversely, if def' =0, then eitherA =0, andp:= (0, ...,0,1 e (%*2 is a non-
trivial solution of (63)«(65) and(68), or A # 0. In the latter case, there exists a vediet 0 with
componenty, ... o1 € C such thaf p=0. Definingq:= (4t/ A)poy_q, thenP:= (p,q) e CZ*2 s
a nontrivial solution of the equation®3)—(65) and (68), i.e., A is a monodromy eigenvalue.
Hence, we have shown that for &jk,v) e C2 with u?# 12 a point\ e C is a monodromy eigen-
value of A(k;u,v) if and only if detl’'=0. In order to prove that détis a polynomial inA of
degree R-1, we apply once more appropriate line transformationf.t@dding successively
the second to the fourth line, the fourth to the sixth line and so on up to kitelide, then
detl'=detT" with the (2k+1) X (2k+ 1)-matrix
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F(r; A, vit) =

0 =it Sy By-41 0
0 0 -R S, By—(k-11 O
_ _ _ _ —k
0 c o -k
where
~ [~k 0} = k 0
Q:: y R:: ,
0 O 2u 2v—-2t
~ -2v-2t-k -2u )
= =0,... k-2.

( 2u+ A 2v-2tan-k) M0k

Now, A appears at most once in each row and each column, whereas only the first akththe 2
line contain no entry involvingA. It is easy to verify that def(A;u,v;t) has the form
+k?A%1+(terms of lower order im), and therefore ddf(A; i, v;t) is a polynomial inA with
polynomial coefficients inu, », andt. Moreover, for all(u,v) e C? with u?+# v a point\ is a
monodromy eigenvalue @(«; w,v) if and only if the determinant df (x; A ; u, v;t) vanishes. As
mentioned at the beginning of the proof, this result remains valid if we repladtn —t. Hence,
the zeros of the polynomials dEt«; A; w,v;t) and detl'(«; A; u, v;—t) coincide, which implies
that detl'(k;A;u,v;t)=detl'(x;A;u,v;-t). Consequently, the polynomialP(x;\;u,v)
:=detI'(k; A; u,v;t) contains no terms ihof odd order, and the terms of even ordet itepend
only on t?>=v?- 2. It follows that P is a polynomial of degreek>1 in A with polynomial
coefficients inu and v, and the zeros oP are exactly the monodromy eigenvaluesAdk; u, v).

Next, we prove that the integers k;-~.. k=1 are the zeros of the polynomiB(«;\;0,0).
To this aim, letl’y be the(2k X 2k) matrix obtained fromd" for (u,v)=(0,0) by deleting the last
row and column. Then

0 Kk 00 - 0 0
0 EO—I 0 0
0 Q+I By-21 O
r, = 0 0 Q+2I B,-3I 0 ,
0 QO+ ((k=3) By—(k-2)I 0
0 0 O+ (k=2 By—(k-1)I
0 0 - 0 0 -1 A
Q'_(—k x)
N o—k/)

and def" =\ detI’y. Moreover, det’y=0 if and only if the equatiol’y(p, ﬁ;}):o has a nontrivial
solution. Such a nontrivial solution is a constant multiple of the vector given by the recurrence
formula
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_((k—l)!)
Po = 0 ,
= B 1 ((k—n)(k+1—n)—)\2 A )
pn_(n BO) (Q+n 1)pn—l_ n(k—n) N\ —n(k+1—n) Pn-1
for n=1, ... k=1. By induction, it can be shown that
o oak=n-piTe ) ((k n) - x2>
n=CO e

Multiplying the vector(pn)ﬁ;é from the left by the last line of;, we get

0=(-1* H[ — 2= M-k N2+ (k= DN?) = H[(k it
(k= 1)',1 ‘ <k 1>',1
Hence, def’y=0 if and only if A2 {1, ... (k-1)?}, and therefore 1k, ... k-1 are the zeros of
P(x;-;0,0.

It remains to deal with the cade=1, where we must consider only the equatigé8) and
(62). Adding both equations i62) to the second equation {60) gives(65) with p_;:=0. Hence,
we can replacé60)—62) with the linear system of equations consisting of the first equatigé3n
and Eqgs(65) and(66). Now, by applying a similar reduction procedure as in the d¢as, we
obtain the polynomial

0 1 0
PG3Nuv)=detl -1 A -1|=A+2u=\+p,
-2u 2t-2v A

whose zeron=-u is the uniquely determined monodromy eigenvalueAb%;,u,v) for each
(u,v) e C2, u2+# 12, O

Corollary 1: For a fixed half-integem:k—% with a positive integer kthere exists a neigh-
borhood 4 C C? of (0,0) such that Ax;u,v) has exactly?k—1 many monodromy eigenvalues
Mk, v),j=1-K, ... k=1, for all (u,v) e 4 with u?# 1* . Moreover,\(x; u,v) depends ho-
lomorphically on(u,v), and lim, , 0,0 MN(kx;«,»)=]j. In particular, monodromy eigenvalues
and classical eigenvalues are distinct ndar, v)=(0,0).

Remark 3: Monodromy eigenvalues also appear in the context of spheroidal wave equations.
In Sec. 3.54 in Meixner and Schéafke (1954) they are characterized by a similar property as given
in Lemma 5, but they are not specified in detail.

In view of Theorem 3 and Corollary 1 we could alternatively define the monodromy eigen-
values ofA(K;,u,v) to be the zeros of the polynomi&(«; - ;u,v) for each(u,v) e C2 (without
the restrictionu?# 1?). Then the monodromy eigenvalug§(x;0,0=j,j=1-k, ... k=1, fill in
the gap of integers appearing in the spectruni\@¢;0,0). Moreover, P(Z,)\ M, v) N+ is just
the polynomial given by Lemma 4 in the cabk-1, and its zeran (2 w,v)=—pu satisfies the
partial differential equation(29) for K— . In the next section we prove that the monodromy
eigenvalues ofA(x; u,v) are solutions of the PDR29) for each half-integek 5,5,5,...}.

VI. MONODROMY PRESERVING DEFORMATIONS

In Jimboet al. (1981, Jimbo and Miwa(1981a, 1981) these authors developed a general
theory for monodromy preserving deformations of linear ordinary differential equations with
rational coefficients. As a main result, they proved that the monodromy(8&ies multipliers,
connection matrices, and exponents of formal monodpodty not depend on the deformation
parameters if and only if certain nonlinear differential equations, the so-called deformation equa-
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tions, are satisfied. This result, however, was proved under the restriction that the characteristic
values at regular singular points do not differ by an integer. On the other hand, in the theory of
special functions and in many physical applications the case where the characteristic values differ
by an integer is of great significance. In this section we consider the isomonodromy problem for
linear systems with two fixed regular singular points and coefficients which depend on one pa-
rametert. Assuming that the characteristic values at the singular points are distinct and indepen-
dent oft, we will show that certain components of the monodromy data are constant with respect
to t if a deformation equation of the typ@.18 in Jimbo et al. (198)) is satisfied. Since the
monodromy components in question determine the existence of solutions of thegSérand
(55), they are relevant to monodromy and classical eigenvalue problems. Applying the results to
the system(11) with an eigenvalue of C as deformation parameter, it finally turns out that the
deformation equation is in principle the characteristic equation of the partial differential equation
(29).

We start with some basic facts about parameter-dependent regular singular systems. At first,
let us consider a family of2x 2) systems of differential equations

%(x,t) - D y(l), (X0 € (BV0) XD, (69)

in an open diskB C C with center 0 that depends on a parametearying in some real or complex
domain®. It is assumed thait9) has a regular singular point at O for &k ©. More precisely,
we suppose that the coefficient matdxof (69) has the following properties:

@ P, t)=(1/x)¥(x,t), whereW: 98 XD — M,(C) is an analytical matrix function.

(b) The eigenvaluesa and B of W(0,t) are distinct and independent ofe®;
Rea<ReB.

(c) There is an analytical functio®:® — M,(C) such thatG(t) is invertible and

G(t)™ W (0,1)G(t) = diaga,B) =:D, te D,

Note that such a matrix functioB always exists since the eigenvalueslof,t) are distinct,
see Theorem 25.1 in Waso@@965, Chap. VII, Sec. 25

Lemma 6: If the conditions (a)—(c) are satisfied, then the system (69) has a fundamental matrix
of the form

Y(x,t) = G(t)H(x,t)xPx’,
where HB XD — M,(C) is analytic, HO,t)=I for all t € ©, and

O) (70
p(t) O
with some analytical function:® — C . Moreover, if 3—« is not an integer, then £ 0.

Proof: If 8-« is not an integer, the existence of such a fundamental matrixJt8 is well
known, cf. Schafkg1951). Hence, we have to consider only the case khaiB-« is a positive
integer. By the transformation

( 0
Jt) =

y(x,t) = x*G(t)yo(x,1), (71
the system(69) is equivalent to the differential equation

x%(x,t) =Wo(x,Hyo(X,t), (Xt) e (B\{0}) XD, (72)

whereWy(x,t) := G(t)"1W(x,t)G(t) - « is an analytical matrix function,
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To(x,1) = 2 x"Wo (), (%t e B XD,
n=0

with Wy o(t)=diag0,k) for all te ®. Now, forj=1,... k-1 we recursively apply the transfor-
mations

1 0
q(x,1) = {(X,1), 3
yj 1(X t) j%klpj—l(t) X YJ(X t) (7 )

wherey;_, denotes th¢2,1)-coefficient of the matrix¥;_, ;. At each stepy;j(x,t) is a solution of
a system

x%l(x,t) =W(x,Dy;(x,t), (Xt e (B\{0}) XD, (74

where the coefficient matri¥; is analytic in8 XD,

Vi, =2 X", (1), (Xt eB XD,
n=0

with W; o(t)=diag0,k-j) for all te®, and ¥;,(t),n=1,...,j—1, are lower triangular matrix
functions[that means, th€l,2) component is identically zefoFinally, by the shearing transfor-
mation

_(1 0)
yk—]_(x,t)— 0 x yk(Xlt)v (75)

we obtain a differential equation

x%%&ﬁ:quﬂwaﬁ,(er(%\mDXQ, (76)

whereWV,: B XD — M,(C) is an analytical matrix function,

W, = 2 X" ,(D), (61 e BXD,
n=0

satisfying

Wy ot) = ( 0 0)
“T\pm 0
with some analytical functiop:® — C. Note thatp is just the(2,1)-component of¥,_; ;. More-
over, ¥, (t),n=0, ... k, are lower triangular matrices for @k ©. Now, the systen{76) has a

fundamental matrix of the form

=J{t), te®D,

Y(x,t) = H(x, H)x'®

provided thatH is a solution of the matrix differential equation
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x%(x,t) =W, HHOH) - HX DI, (Xt e B XD, n

such that for eache © the matrixﬁ(x,t) is invertible for some, and hence alle %5. Obviously,
(77) has a formal solution

Hx,t) = > X"Hy (), (x,t) e B XD, (78)

whereﬁo(t):l and the coefficientgin, n>0, are uniquely determined by the recurrence relation

n-1

(A1) = NHA1) = Hy(03() = = 2 W0 (DH; (). (79)
j=0

Following the proof of Theorem 5.3 in the book of Was@®65), it can be shown that the series
(78) converges uniformly in every compact subse®k ©. Thus, a Weierstrass theorem implies

thatH is analytic in% X, and thereforéd is an actual solution of77). Further, sincel(t) has
the special forn(70) and ¥, ;(t),j=0, ... k, are lower triangular matrices, it is easy to verify that

ﬂj(t) are lower triangular matrices fq't=0, ... kK. Now, by combining the transformatiorigl),
(73), and(75), it follows that the differential equatio(69) has a fundamental matrix of the form

Y(x,t) = X“G(t)( )H(x )0, (80)

1
axt x
\ivhereq(x,t) is a polynomial inx of degreen—1 with coefficients depending analytically grand
H(x,t) is an analytical matrix function of the type

hia(x,t)  x"thy,(x,t) )
hoa(X,t)  hpa(X,1)
satisfyingh;41(0,t) =h,5(0,t) =1. Now, if we define
X.1) = ( h11(x,t) Xhyo(x,1) )
Xq(x, By 1) + X (1) X%, Hhya(x,t) + ha(X,1)
thenH: B XD — M,(C) is analytic,H(0,t)=1 for all te ®, and

( ! 0>ﬁ t)=H t(l O)
xq(x,t) xX ) =HxY 0 x¢/°

Hence, we can write the fundamental maii®9) in the formY(x,t)=G(t)H(x,t)x°x’®, whereH
has the properties stated in the lemma. O
Now, we consider a family of2 X 2) differential systems,

ﬁ(x,t):(

j—i(x,t) =d(x,)yxt), xt) e (&\{0,1}) XD, (81)

in a domain®, B,U B, C & CC, with regular singular points at=0 andx=1 and a parameter
varying in some domaif® C R or ® C C. Further, we assume that the coefficient madpiin (81)
has the form

d(x,t) =

1 T(x,t), (xt) e (®\{0,1}) XD,
X(x=1)

whereWV: & XD — M,(C) is an analytical matrix function with the following properties.
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()  The eigenvaluesgy, B of ¥(a,t) are distinct and independent b€ ® andae{0,1}; in
addition, Rer=<Reg.

(I  There are analytical functior,: © — M,(C), a e {0, 1}, such thaG,(t) is invertible for all
te® and

Ga()™ ' (a,H)G4(t) = (- 1)* diaga, B).

From Lemma 6 it follows that the syste(81) possesses a fundamental matrix of the form
Ya(x,1) = Ga(t)Ha(x,t) (x — 8)P(x ~ a) " (82)

in the unit disk®8,C & with centera e {0, 1}, whereH,: B, XD — M,(C) is an analytical matrix
function satisfyingH,(0,t)=I for all t e ®, D=diag «, 8), and

J(U—( 0 O) (83)
=7 \pa) ©

with some analytical functiop,:® — C. By analytic continuation along curves, we can assume
that Y, is defined on the universal coverifg of the set&\{0,1}. Since Y, (x&"™+a,t)=Y4(X
+a,t)e@™[1+27id,(1)] for all (x,t) e (Bp\{0}) XD, the diagonal matriD and the Jordan-type
matrix J,(t) represent the monodromy behavior ¥f corresponding to a circuit around
€{0,1}. Moreover, asy, andY; are both fundamental matrices of the same differential equation
(81), there exists an analytical matrix functi@® — M,(C) such thatYy(x,t)=Y;(x,t)Q(t) for

all (x,t) e (&\{0,1}) X ®, which is called the connection matrix fofy andY;. The next result
gives a sufficient condition that certain components of the monodromyJgatedQ are constant

in ©. For this reason, we establish in addition(tp and (II) the following assumptions on the
coefficient matrix®.

(Il There exists an analytical functidi: & XD — M,(C) such that
ad aQ
;Euﬁ+®uﬁﬂuﬁ=QWD¢Wﬁ+3;Wﬁ,(mﬂe@\mJDXQ-&W

(IV) The matrix functionsG,, a e {0, 1}, satisfy the linear differential equations

G
at

1) =Q(at)G,yt), tedD. (85)

Theorem 4: If the conditions (I)—(IV) are satisfied, then

e =0in 9D, (86)

where the Jordan matrices,Jae{0,1}, are given by (83) and Q:® —C denotes the (1,2)-
component of the connection matrix Q fog &hd ;.
Proof: Let y:= B—«, and for fixeda e {0, 1} we define

i?un—ﬂmonmm (xt) e RXD.

Zy(x,t) =

From (81) and the deformation equati@B4) it follows that
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9Z, AY, 9Q Y, d(PY,) Q
a _ a__Y _Q_a: ( a)

-—VY,-QdY
IX axdt aIx ° X ot ax 2 a
Yy (0@ 9Q A
=P +H|—-—-QD|Y,=D -QY,| =z,
at it ax at

and thereforeZ, is a matrix solution of the differential equatig8l) in 93. Hence, there exists an
analytical functionC,:® — M,(C) such that

Za(Xat) = Ya(th)Ca(t)y (Xlt) € m X Q .
Now, by means of the differential equatiod5), we get

Y, dG JH dJ
—=2 @H,(x—a)P(x—a)’a+ G, ata(x —a)P(x—a)’a+ log(x — a)GH(x - a)D&—ta(x -a)’a

at at

dH,
at

= (Q(a, G H,+ G, +(x—a)” log(x — a)GaHa%*>(x— a)P(x - a)’a,

and sinceC,=Y,'Z,, it results that
(x=a)°(x - a)’Cy(x— a)Ya(x —a)™®

=(x-a)°(x- a)JaYgl(% - QYa> (x—a)Ja(x—a)™P

JH dJ
=HGHQ( ) = Q)GH, + Hy '~ % + (x~a) 7 log(x ~a)
0 0
=(x—a)F,+ (x—-a)” log(x - a)| dpa 0 (87
at

with some analytical functiofr,: & XD — My(C). Further, by setting

Cu(®) C12(t)>
Ca(t) Cxlt) /)’

(for clarity, we omit the inde» in the entries ofC,), we have

Ca(t) = <

(x=a)P(x~a)’aC,(x~ a)a(x~a) ™

_( 1 0 )(cn c12)< 1 0 )
“\(x-a)”log(x-a)pa (x-a)?/\Cyy Cypp/\-logx-a)p, (x—a)"

_ (Cll - log(x - @)p,Cy2 (x—a)7"Cy, )

(88)
* Cyo+ log(x— a)p,Ci

Comparing(87) to (88), it follows that C;,=0 in ® since the function in(87) is bounded at
x=a. This in turn impliesC,;;=C,,=0 as the diagonal entries {87) have a zero at=a for all
t e ®. Finally, we obtain that

(x—a)P(x-a)aC,(x-a)Ja(x—a) P = ( 0 0) (89)
a (X - a.) yCz]_ O
has no logarithmic singularity at=a and therefore the last ter(87) vanishes identically. Hence,
A/ t=0inD.
Next, we prove thatQ,,/dt=0. SinceYy(x,t)=Y;(x,1)Q(t), it follows that
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aYo_ Y1, dQ

=—Q+Y;—. 90
at ﬁtQ Lot (30)

Further, fromZ,(x,t) =Y,(x,t)C,(t) we get

JY, aY
a—tovgl — Q1 =Y,CoYoh, ﬁ—tl\ql -Q=Y,C Y% (92)

By means 0f(90) and Y'=Q Y7, the first equation if91) becomes

aY. 1 9Q -
Y- 0=YQGQY - i =Q Y (92

Now, (92) and the second equation (A1) imply

_ - dQ __
YiC1Y1' = YiQCQ YL - Yo QY

and therefore

9Q _5e -

o1 QG GiQ. (93
Note that the matrix functioil, has the form

0 O
Cyt) = (ca(t) 0), ae{0,1}.

Hence, if we set

Qu1(t) Quat) )

= y @ y
o (Q21(t) Q1) te

then(93) is equivalent to the system

i(Qll Q12> :< CoQ12 0 )
dt\Q Qx CoQ22— €1Q11 €1Q12/°

and we immediately obtain th@Qi,/dt=0 in ©. O
In the following we apply the results of Lemma 6 and Theorem 4 to a family20f 2)
differential systems

Z—i(x,t) = [)%BO(U + éBl(t) + C(t)}y(x,t), (x,t) e (C\{0,1}) X D, (99

where te® with some domain® CR or ©®CC, and we suppose that the coefficients
By,B1,C: D — M,(C) are analytical functions. Further, we assume that the following conditions
hold.

(0] The eigenvalues, B of By(t) are distinct and independent b€ ©. Moreover, they coin-
cide with the eigenvalues @,(t), and Rex<ReB.
(i)  There are analytical functiors,:® — M,(C), ae {0, 1}, such thatG,(t) is invertible and

Go(t) 1By(t)Go(t) = = G4()™*B4(1)Gy(t) = diag @, 8) =: D, teD.

Let Y,, ae{0,1}, be fundamental matrices ©94) in the open diskB,C C with centera and
radius 1 having the forni82), whereH,:B X — M,(C) is analytical,H,(0,t)=I for all te ®,
andJ4(t) is given by(83) with some analytical functiop,:® — C. Again, by analytic continua-
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tion, we assume that, is defined on the universal coverifg of C\{0,1}, and we denote by
Q: D — M,(C) the connection matrix fol¥y andY;. In the sequel we are looking for conditions
such that for fixed € © the system94) has one of the following properties.

(P) There exists a fundamental mati¥xof the form

Y(x) =[x(1 -x)]*P(x)e“V*, x e C\{0,1}, (95)

whereP:(— M,(C) is a polynomial matrix function.
(H) There exists a nontrivial solution of the form

y(x) =[x(1 -x1Ph(x), xe C\{0,1}, (96)

whereh:C— (2 is an entire vector function.

Lemma 7: Suppose that the conditions (i) and (ii) are satisfied, and=l& .tThen the system
(94) has the property (P) if and only 8-« is an integer and gt)=p;(t)=0, and it has the
property (H) if and only if Q,(t)=0.

Proof: By means of the transformatioy(x) =x*(x—1)“y(x), the differential equatiori94) is
equivalent to the system

%(x,t) - )—t'éo(t) + rll’él(t) " C(t)}?(x,t), (x1) € (C\{0,1}) X D, (97)

WhereNBO(t) :=By(t) -« and ~Bl(t) : =B,(t) — . Moreover,

~ 1 0
Ya(x,t) = Ga(t)Ha(X,t)<0 (x-a)f ) (x—a)’a (98)

are fundamental matrices ¢87) in a neighborhood o& € {0, 1}. First, suppose thg®—« is an
integer and thaipy(t)=p4,(t)=0 holds. In this casé(t)=J,(t)=0, and the systeni97) has a
holomorphic fundamental matrix sin¢&—a)? ¢ is holomorphic andvy(-,t), Y,(-,t) contain no
logarithmic terms. Moreover, as the coefficient mathik ,t) of (94) is a rational function which
is bounded at infinity, the extension of Halphen's theorem, Theorem 2.4 in Gesttalsy2000),
implies that the systen®97) has a fundamental matrix of the forl(x)=R(x)e“®* with some
rational (and hence polynomiaimatrix functionR:C— M,(C). Conversely, if(94) has a funda-
mental matrix of the forn{95), thenY,(-,t) andY,(-,t) are holomorphic matrix functions, which
gives B—a € 7 and Jy(t) =J;(t) =0.
Next, let us assume th&;,(t)=0. If we define
0 4 0
y(X) = Yo(X,1) 1) 7% Go(t)Ho(X,1) L
then y is a nontrivial solution of (94), and xPy(x) is analytic atx=0. Since Yy(X,t)
=Y;(x,t)Q(t) and Q,,(t)=0, we obtain
00=vix000( ) = - eymen( 0 |

y(X) = leQ 1 =X 1 1(X, sz(t) ’

and therefore(1-x)"Py(x) is analytic in a neighborhood of=1. Now, by the existence and

uniqueness theorenm(x) :=[x(1-x)]Py(x) can be extended to an entire vector function. Con-
versely, suppose th&4) has a nontrivial solution of the forg®6). Then

0 0
y(x) = Yo(X,t)(%) = Y1(X,t)(cl>

with some constantsy, ¢; € C\{0}. SinceYy(x,t)=Y;(x,1)Q(t), it follows that
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which givesQ,,(t)=0.

Now, in addition to(i) and(ii), we assume that the coefficients(6#) satisfy the following
conditions.

(i) There exists an analytical functidn: C XD — M,(C) such that the deformation equation
(84) holds in(C\{0,1}) X ®, where® is given by

D(x,t) = %Bo(t) + XTllBl(t) +C(t), X1t e (C\{0,1}) xD.

(iv)  The matrix functionsG,, a e {0, 1}, satisfy the differential equations

A0, te®D.

The next result is an immediate consequence of Theorem 4 and Lemma 7.

Corollary 2: Suppose that the conditions (i)—(iv) are satisfied. If (P) holds for gaex, then
(94) has the property (P) for all¢ ©, and if (H) holds for onege ©, then (94) has the property
(H) for allt e ®.

Finally, we apply the results of this section to prove that the classical as well as the mono-
dromy eigenvalues of the Chandrasekhar—Page angular equation in dependgnog efR? are
(locally) solutions of the partlal differential equatigg9).

Lemma 8: LetKE[E, and o e {-1,+1 be fixed. Moreover, suppose that the functions
v: D — R\{0} and w:®© — R are solutions of the system (50) and (51) on some intedval(0,x).

Finally, let

t t
(t) == —(v(t) ) p(t) := —(v(t) - —) te®, (99
# o(t) (t

and ge®. If w(ty is an eigenvalue of @;ulty),v(ty)), then wt) is an eigenvalue of
Alk; u(t), »(t)) for each te ©. Furthermore, if x is a half-integer and ;) is a monodromy
eigenvalue of A«; ul(ty), v(tp)), then wt) is a monodromy eigenvalue of & u(t), »(t)) for each
te®.

Proof: In terms of(99) and \(t):=w(t), the coefficient matrice€l2) of the system(11) take
the form

k 1t
~571 2<U(t)+m> - w(t)

k 1
0 —+ =
2 4

Bo(t) =
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_t(-®m*+ -(v(t)z-l))
C(t)_v(t)( ®*-1)  @h*+1) /)

where the conditior(i) is satisfied witha:—(K/Z)—%1 and B:(K/2)+%1. Now, if we define the
matrix function

(0(0)?- @(% —x) (0®2+ (1 -%)

Qx,t) := —

o0 (xt) e CXD,

(v(t)%+ o)X (v(t)z—a)(x—%>

then, by a straightforward calculation using the characteristic equati@snd(51), it follows
that the deformation equation (iii ) holds. Finally, by setting

B0 E( L) _ ] -4
Gy(t) = ¢ [2 v(t)+v(t) Wi fe . Gy(t) :== KGy(HK,
0 (rc+3)e

whereK is the matrix(20) and

_ Yo(n?-o
P(t) == fto —ZU(T) dr, te®,

the conditiong(ii), (iv) are satisfied. Since(t) is a monodromy eigenvalue @f(«; u(t), v(t)) if
and only if (11) has the propertyP), andw(t) is a classical eigenvalue &f(«; u(t), »(t)) if and
only if (11) has the propertyH), the assertion follows from Corollary 2. O

Theorem 5: For a fixed K:k—% with a positive integer klet (0,0) e & CR? be a simply
connected domain such that for eath,v) e & all monodromy eigenvalues)(x;u,v), j=1
-k, ...,k=1, of A(x;u,v) are simple zeros of the polynomial &, - ,u,v) given by Theorem 3.
Then each function=\}, j=1-k, ... k-1, satisfies the partial differential equation (29) &.

Proof: Let j e {1-k, ... ,k—1} be fixed. The monodromy eigenvaluesAtf<; u, v) are exactly
the zeros of the polynomiaP(«; - ;u,v), and since all zeros oP(x;-;u,v) are simple, the
implicit function theorem implies that{(«; ., ») depends analytically ofu, ») in &. In order to
show that the functiol\=\} satisfies the PDE29), we make use of the unique continuation
property of analytical functions. That means, it suffices to prove @@t holds forA=\} in a
neighborhood of some poiffif, v)=(7,0) € &, 7>0. Now, in view of the coordinate transforma-
tion (99), we must verify that the function(«; w(t,v),»(t,v)) is a solution of the partial differ-
ential equation49) in a neighborhood of the poirit,v)=(7,1). To this end, let us consider the
characteristic equations ¢49),

a—v(t,u) __ 2v(t,u)w(t,u) ,
at t

aw 1 t !

together with the initial values

v(r,u)=u, w(r,u)= )\g(K;,u(T,u),v(T, u)),

which depend analytically on the parametee (0,). The solutionsv(t,u) and w(t,u) of
this initial value problem are analytical functions in a neighborhood(mnfl), and since
(wlou)(7,u)=1, they form locally an integral surface for the PD#9), compare Johri1982,
Chap. 1, Sec. 6 More precisely, there exists an analytical functidrdefined on a neighborhood
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U of (t,v)=(r,1) such thalU(7,v)=v, andW(t,v) :==w(t,U(t,v)) is a solution of(49) in V. Now,
Lemma 8 implies that\V(t,v) is a monodromy eigenvalue @&(«;u(t,v),»(t,v)) for all (t,v)
e U, and sinceM(7,v) =N)(«; u(7,v),v(7,v)), it follows thatW(t,v) =\4(«; u(t,v), »(t,v)) holds
identically on®J. This completes the proof of the theorem. O

In a similar way we can apply Lemma 8 to prove that for fixed (0,~) the zeros of the
functionA—A(k; N, u,v) defined in Sec. Il and therefore the eigenvalued@f; u, v) satisfy the
partial differential equatiori29). This alternative proof of Theorem 1 is based on monodromy
preserving deformation—a general technique, which should be applicable to other eigenvalue
problems as well. Potential candidates and associ@tedatrices for solving the deformation
equations can be found in Jimbo and Mi®81a, Appendix ¢

Finally, as a consequence of Theorem 5, the zeros of the polyn®&tial ;u,v) given by
Theorem 3 satisfy the PDE29) and do not coincide with any eigenvalue Afk;u,v) in a
neighborhood of u, »)=(0, 0). Moreover(see the proof of Lemma)4P(x; - ;u,v) gives rise to a
special integral of polynomial type for the Painlevé (82). Now, the results of Mansfield and
Webster(1998 suggest that these special integrals are unique in some sense, which in turn implies
that classical eigenvalues of the Chandrasekhar—Page angular equation are not algebraic.
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APPENDIX A: EIGENVALUES AND EIGENFUNCTIONS IN THE CASE u=v=0

For fixedk e [% ), a point\ e C is an eigenvalue of(«;0,0) if and only if the systent5)
with (u,»)=(0,0) has a nontrivial solutiors(6) satisfying

r|sw)|2d0<oo. (A1)
0

(%
A\ /tané u(cos 6)

Introducing the functionsi,v:(-1,1)—C by

S(6) =: sint2 ¢ . (A2)
1/ cotg v(cos 6)
then(5) with (u,»)=(0,0) is transformed into
(1=Xu’(X) = (k+3UX) +Ao(x),  (L+X)0"(X) == uX) = (k+ 3)v(X), (A3)

and the normalization conditiofAl) is equivalent to

1 1
f U(X)z(l _X)K+1/2(l +X):<—1/2 dx < o0, f U(X)2(1 _X)K—1/2(1 +X)K+l/2 dx < . (A4)
-1 -1

If A=0, then the differential equation®3) imply that there are constants,c, € C such that
u(X)=c(1-x) "2 and v(x) =c,(1+x)™*"2 and from the conditiorfA4) it follows that ¢;=c,
=0. HenceA=0 is not an eigenvalue &(«;0,0), and we assume in what follows thet: 0. In
this case, the second equation(AB) gives
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1
u(x)z—lixv'(x)— 2y, (A5)

and forv we obtain the second order differential equation

1 2
(1=-x20"(x) +[1 - 2Ax+ LxJv’ (x) + {)\2 - (K+ E) :|U(X) =0.
If we seta:= k-3, B:= k+3, and A= \-k—3, this differential equation becomes

(1-x"(X) +[B-a—(a+B+2xX]'(X) +AA+a+ B+ 1)v(x) =0, (AB)

and the second condition {#\4) takes the form
1
f v(X)A(1 =X)L +x)? dx < . (A7)
-1

Note that(A6) and (A7) is the eigenvalue problem associated to the Jacobi polynomials. More
precisely, the solutions of the differential equati@®) which are square integrable with respect
to the weight functior(1-x)%(1+x)# are constant multiples of the Jacobi ponnomiBi%’B) with
some non-negative integer and the corresponding eigenvalu€sare determined by the equa-
tion A2-(x+3)’=n(n+a+B+1), ie, Ni=x(x+3+n). Now, if we define v(x):=—P\"?(x),

xe (=1,1), then(A5) yields

a+B+n+1

d (23 a (2% a
ARU() = (1 + X)&PS1 B+ ppeP) = (1 +x) P8+ 4 pplaf)

_atp+n+l (a+1,8) (a+1,8) (a,8)
_oz+,3+2n+1[(’8+n)P"_l FNRT APy

(a+B+n+ 1P — (g +n+ )PP
= (B+ PR = NPT,

where we applied the differentiation formulas and contiguous relations for Jacobi polynomials, see
Magnuset al. (1966, Sec. 52 Hence,u(x)=+P'™**#Y(x), x e (-1,1), and sinceu satisfies the

first condition in(A4), the numbers.;; are in fact eigenvalues @(«;0,0). Moreover, the corre-
sponding eigenfunctions are constant multiples of

[0 _
+ tané PE{<+1/2,K 1/2)(COS 0)
sin® 6 ; , 0e(0,m),
_ ’COtE PE]K‘l/Z,K+1/2)(COS 0)

which form a complete orthogonal set4#((0,),C?). In particular, the spectrum @(«;0,0) is
given by{\7:n=0,1,2,..}.

APPENDIX B: A NUMERICAL EXAMPLE

As a numerical example, we have computed the coefficigpfsof the power series expan-
sion(38) up to and includingn+n=8 for K:% andj =1 using the recurrence relation given in Sec.
[ll. The coefficients have been rounded to six significant figures and listed in Table I. It should be
noted that they are to some extent different from the coefficients displayed in Seiffel§1983,
Table ). Evaluating the power series expansi(88) at «=0.01 and 8=0.02, i.e., (u,v)

=(0.005,0.015 yieIdlezl.Oll 67 as a numerical approximation for the eigenvalyand this
result coincides with the value given in Suffeen al. (1983, Table I). For a second pair of
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TABLE |. The coefficientsc,,, 0<m+n=<8, of the power series expansi¢d8) in the case<=% andj=1.

m=0 1 2 3 4 5 6 7 8

n=0  1.000 Oe+00 5.000 0e-01 0.000 00 0.000 00 0.00000 0.00000 0.00000 0.00000 0.00000
1 1.666 62-01 0.000 00 0.000 00 0.000 00 0.00000 0.00000 0.00000 0.00000
2 7.407 48-02  -1.48148-02 0.000 00 0.000 00 0.00000 0.00000 0.00000
3 -8.2304%-03 3.29218-03 -4.703 12-04 0.000 00 0.000 00  0.000 00
4 -9.14498-04 54869eé-04 -1.2228&-04 1.35868-05 0.000 00
5 5.08058-04 -4.06442-04 1.4179e-04 -2.6709&-05
6 -3.38702-05 3.38702-05 -1.6335&-05
7 -2.63438-05 3.16122-05
8 7.108 5@-06

parameters(a, 8)=(0.5,1.0, i.e., (u,v)=(0.25,0.75, we obtainX1:1.597 45, which differs
slightly from the valuen,;=1.597 64 listed in Sufferet al. (1983, Table IJ. In order to test the
reliability of our numerical result, we can use the statement of Lemma 3. That means, we approxi-
mate ®(\) defined in(25) by the second componefit,(\) of d,(\) for n=8, and we compare
®g(\1) and ®g(\;) with the theoretical resul®(\;)=0. As Og(\,)=3.608 82-05 and®g(\,)
=-2.511 64-04, our result seems to be more trustworthy. Finally,(etr)=(0.02,0.1. The
coefficients of the polynomlatP)B are given in Table Il. For these parameters our power series
approximation gIV69\1 1.073 79 which differs significantly from the valuq 1.061 04 given

by Chakrabart{1984, Table ). Despite his claiming of an accuracy of six decimals, the evaluation
of Og at the eigenvalues in question giveg(\;)=5.688 9&-12 and®g(\,)=1.527 7@-02 in
favor of our result. Thus, Chakrabarti’s calculations should be taken with some caution.

APPENDIX C: EIGENFUNCTIONS IN THE CASE |u|#|v|

Eliminating the second component gfin the system(11l), we get a linear second-order
differential equation for the first componeyt given by

d’y, ( 1 )dY1 ( ™, T, T3 T4 Ts )
S | W |yt =+ 2+ + + =
dx Frad - x(X) YT x-1" (x-12 x-b Vi) =0

with

A
b:= M—, o= Hu? - 17),
“w

TABLE II. The coefficientss, of the polynomial®g(\)=328 5\" for x
=2, #=0.02,»=0.1.

n=0 1.221 58+00 n=9 4.911 5&-06
1 1.443 4¢-02 10 —-4.220 48-04
2 -1.705 28+00 11 -9.466 16-08
3 -7.922 9¢-03 12 1.026 48-05
4 6.721 14-01 13 6.889 38-10
5 1.460 08-03 14 -1.264 76-07
6 -1.12358-01 15 -1.000 08-26
7 -1.210 2&-04 16 6.151 16-10
8 9.396 64-03
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2a 1
= N2= 207+ 2v+ a— u? - dav + ,u,, a==£+—,
JTADN 2 4
4au? 2(vu? + 2au® — vA\?)
2
Ti=—at, Ti=—o 5 +t2u-7, mp=all-a), T5:= .
2 3 MZ_)\Z 1 4 ( ) 5 )\Z_MZ

Now by means of the transformation

yi(%) = X*(x = DY), t= £\1? - pu?,

we find thaty(x) satisfies the generalized Heun equation,

dzdli(zx) . ( ! o, 1X‘_ = 1X‘_ e, 4t) d'gix) ¥ 'i(é)j _ﬁf)‘(; fgi;z ¥x¥=0,  (CD
where
Mo=~2a, m=1-20, pp,=2, pBr:=8at,
and

_2ap(b-1) . 2aub

B1= P = N2 = 2t[b+ 2a(1 + 20)] + 2c( = 1) + 2v(2a = b) “ —,
M 12N

2
Bo= b()\z_Mz)+b[2(v+t)_4a(v_t)_4a2]+a_ )\,LLO(b
M

We observe that 0, 1, arilare simple singularities with characteristic exponeftg.), (0,u4),

and (0,u,), respectively, whilex is (at mosj an irregular singularity of rank 1. To stress the
importance of Eq(C1), it is sufficient to remark that it contains the ellipsoidal wave equation as
well as Heun’s equation and thus the Mathieu, spheroidal, Lamé, Whittaker-Hill, and Ince equa-
tions as special cases.
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We investigate integrable two-dimensional Hamiltonian systems with scalar and
vector potentials, admitting second invariants which are linear or quadratic in the
momenta. In the case of a linear second invariant, we provide some examples of
weakly integrable systems. In the case of a quadratic second invariant, we recover
the classical strongly integrable systemsQartesian and polar coordinateand
provide some new examples of integrable systemganabolic and elliptical
coordinates © 2005 American Institute of PhysicfDOI: 10.1063/1.1818721

I. INTRODUCTION

The direct approach to investigate integrable Hamiltonian systems is a very classical
subject?'2 It consists in determining the class of potentials supporting additional invariants within
some specified family of phase-space functions. This method produced several interesting results
in the 1980s, as illustrated in the review by HietarihiRecently~° the approach has been applied
to treat in a unified way both invariants at arbitrary and fixed energy, where the second possibility
is related to the existence of additional “weak” invariants only on given energy hypersurfaces.

Many results are known for natural reversible Hamiltonians. One of the reasons for this is that
the search for additional invariants can be restricted to functions with a definite parity in the
momenta. This property leads to a substantial reduction in the usually very complicated set of
equations. Much less is known in the case of Hamiltonians with vector potentials. For a long time,
the only systematic attempt to cope with this case was that of Daetzal’ providing a set of
solutions in Cartesian coordinates. Recently, McSween and Winféotitained some new solu-
tions in polar coordinates and Bérubé and Wintefnétztended the results to the corresponding
quantum problem. In both works the authors also identify the subset of superintegrable systems. In
an attempt to extend these results to include weak integrability, we have prb({/mmneral
solution for linear invariants and analyzed some new classes of weakly integrable systems.

The physical applications of Hamiltonians with terms linear in the momenta are of great
relevance. Just to mention one of the most important, we recall the ubiquitous role of rotation in
astrophysical problems like those of galactic dynamics. The purpose of the present paper is to
reinvestigate Hamiltonian systems with both scalar and vector potentials, trying to identify those
admitting the existence of a second invariant which is a quadratic polynomial in the momenta. We
state the general approach at arbitrary and fixed value of the first invalecabi constaptand
show that, in the case of strong integrability, it is possible to get a general formal solution. This is
valid for every standard coordinate systems which are the same as the separable ones in the purely
scalar case. Therefore, in addition to the above-mentioned Cartesian and polar case, solutions in
parabolic and elliptical coordinates can be looked for. In all cases, the potentials are defined in
terms of a pair of scalar functions for which we get the integrability conditions: solving them

¥E|ectronic mail: pucacco@romaz2.infn.it
PElectronic mail: kr@physto.se

0022-2488/2005/46(1)/012701/25/$22.50 46, 012701-1 © 2005 American Institute of Physics
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determines the vector potential, whereas the scalar potential is subject to an additional linear
differential equation. We provide some new examples of integrable systems with a vector potential
whose existence can be discovered working in parabolic and elliptical coordinates. The case of
quadratic invariants was also addressed by Yétifavho obtained integrable systems with Rie-
mannian configuration space and applications to rigid body dynamics: the examples with a flat
configuration space can be reproduced with the procedure devised here. The issue of separation of
the Hamilton—Jacobi equation in presence of a vector potential has been recently faced by Benenti,
Chanu, and Rastell? Their general approach requires an extended configuration space, prevent-
ing the application of the approach adopted here which heavily resides on the use of conformal
coordinate transformation in two dimensions.

The plan of the paper is as follows: in Sec. Il we recall the structure of Hamiltonian systems
with terms linear in the velocities; in Sec. Il we illustrate a version of the direct approach to find
polynomial invariants which is particularly efficient in treating two-dimensional systems; in Sec.
IV, for the sake of completeness, we recall systems admitting a second invariant which is a linear
polynomial in the momenta; in Sec. V we treat the case of the quadratic second invariant; in Sec.
VI we illustrate all known strongly integrable solutions in the quadratic case; and in Sec. VII we
conclude.

Il. HAMILTONIANS WITH SCALAR AND VECTOR POTENTIALS
We are interested in finding integrable examples of systems generated by a Hamiltonian
function of the type
H = 5(0% + PY) + AdX,Y)Px+ Ao(X,Y)py + V(X,Y), (1)

where the functiorV is the ordinary “scalar” potential andl; and A, are the components of a
“vector” potentialA in two dimensions. Under the canonical transformation

Px — Px+ diF, py—pyt ﬁyFa 2

whereF(x,y) is an arbitrary function, the Hamiltonian remains invariandAifindV are changed
according to

A—A+VF, 3
VoV+A-VE+3| VF]2 (4)
However, the two quantities
QxY) = 3(3A1 = 6Ap) (5
and
W(x,y) =V - 3|A[? (6)

are “gauge invariants” and can therefore be used to uniquely characterize the model system. The
Hamiltonian to be worked on becomes then

H = 50t ALY+ 5Py + Ag(x,Y)) + WIX,Y). @)

Q, the “curl” of the vector potential, has several physical interpretations: in astrophysical and
celestial mechanical applications, it usually denotes an angular velocity field; it is a magnetic field
in electrodynamics and plasma physics and so on. We remark that in general it is easier to attempt
to solve directly forQ andW. To recover the scala¥, one must havé\; andA, and this can be
another difficult problen’?.

We can first write the canonical equations provided by
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X=pet Ag (8)
y=py+A, (9)
Py =~ xAaPy ~ APy — AV, (10
by == APy — dyAPy — 9V, (11

and then simplify them by exploiting the functions introduced above to get the equations of
motion

X— 20y = - oW, (12)

§+ 20%=— W, (13)

It is readily verified that under the phase-space flow generated 2yand (13), there exists a
conserved function that is the first invariant of the systdacobi constant

J=2(2+y?) +W. (14)

In the investigation of the integrability properties of Hamiltoni@, it turns out to be very
helpful to work with complex variables. We perform then the canonical point transformation given

by

z=x+iy, P, =p=3(pc-ipy), (15)

z=x-ly, pr=p=3(Pc+ipy), (16)
so that Hamiltonia(7) turns out to be
H=2p+D)(p+d) +W(z7), (17)
where the complex function
D =2(A;-iAy) (18)
has been introduced. In these variabl@sis given by
QO =23{09}, (19

whereJ denotes the imaginary part. Equatiqt$) and(16) display a nice space-saving feature of
using complex variables: even if an expression is not real, it is enough to write a single relation
between complex functiorigike, e.g.,(15)]. The remaining information is provided by the corre-
sponding complex conjugate expression, which we therefore do not write explicitly. For example,
the canonical equations given y7) are

2=2(p+®d), (20

p=-2(p+®)a,d - 2(p+ D)o, - W, (21)
and the equations of motion corresponding18) and(13) are
7+ 2i0z= - 23,W. (22

The Jacobi constant now is
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J= %'z?+ W. (23

IIl. POLYNOMIAL INVARIANTS

We are working with a Hamiltonian system with two degrees of freedom of which we already
know an invariant, the Jacobi constant. In order to identify integrable systems in the usual
Liouville—Arnold sense, we must find a second independent phase-space function conserved along
the flow. The standard direct method to solve the problem consists in making a suitable ansatz
about this function and trying to solve the system of differential equations ensuing by the conser-
vation condition. For several reasons, the ansatz of a polynomial in the generalized momenta is the
most commont. It is well suited from the mathematical point of view, since it allows one to get a
system of PDEs in the coordinates only and is also well grounded on the basis of experience with
already known integrable systems.

Since we are looking for a real function, we make the following assumption:

M

M= (D(p+ D)<+ Di(p+ )Y). (24)
k=0

Although it is common, in the vector potential case, to see the invariant written in terms of the
velocities, this is the correct interpretation B/ as a phase-space function of the canonical
variables. In order to satisfy the conservation of funciia4), we impose that its Poisson bracket
with the Hamiltonian vanishes,

{I™M 11 =0, (25)

and try to solve for the complex functior®,(z,2). In the presentation of the results, for easy
comparisons with existing works, we will revert to the usual expressions in terms of the velocities,
replacing the momenta if24) according ta20). In this case, conservation of the invariant can be
checked by means of the condition

dl™
" =0, (26)

along the solution of the equations of moti@p).

Following the approach already used in the scalar tasme consistently apply the trick of
the energy constraint even in the present case. Here, with energy, we mean the Jacobi constant
(23). This method has the advantage of allowing the simultaneous treatment of “strong” invariants
(the usual ones which are conserved for arbitrary values of the enangly“weak” invariants
(functions which are conserved only on some energy surfaltethe papers cited above, we have
moreover shown how the energy constraint simplifies the structure of the system of PDEs that
must be solved. The essential remark is that, to identify the cases of strong integrability, it is
sufficient that in the final results a subset can be isolated which is independent of the energy
parameter, in the present situation the given value of the first invariant, let us.dayve are
interested in a “strongly integrable system,” in the end we must get a solution independznt of
The procedure may appear more involute, but, at least in the scalar case, it reveals to be very
effective.

Formally, the idea of operating with the energy constraint is very simple. It consists first in
introducing the “null” Hamiltonian,

Ho=H-C=0, (27)

or, on the same footing, the “null” Jacobi invariant,
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J=J-C=imz-G=o, (29)

whereC as usual denotes the given fixed value of the Jacobi constant and

G=C-W (29

is the so-called “Jacobi potential.” Second, using in a consistent way the constraint

2(p+®)(p+®) =G, (30)

wherever it appears in the computations. This essentially occurs when, implementing the conser-
vation condition(25), a polynomial relation in the generalized momenta appears and the constraint

(30) is used to eliminate powers of the mixed variablps ®)(p+®) in favor of powers ofG.

One minor shortcoming of this approach is that, in view of the explicit appearance of the function
G, rather than simply the potentis¥, some of the coefficients of the invariant in general depend
on the energy parameter too,

Therefore, to obtain the standard expression in terms of phase-space coordinates only, in the end
we must remember to perform the substitution

C—H(p,p.2.2), (32

wherever the paramet€appears. In view of31), we see that this replacement does not affect the
degree of the polynomial in the momenta.

In practice, computing the Poisson brack2b), using the constraint, collecting the coeffi-
cients of the various powers @f+® (they are accompanied by their complex conjugatesd
imposing their vanishing, we get the system

1
D1 +ikQDy + Z—Gkaz(ek+1ok+l) =0, k=0,1,... M, (33

where it is implicitly assumed thd@; =0 for j <0 and forj > M. The set of equatio83) must be
supplemented by the closure equations

dDw =0 (34)

and

R{3(GDy}=0, (35)

wherefR denotes the real part. For sake of space, we do not write the expressions of the standard
direct approach in real coordinates and without the energy constraint. To compare with, we refer
to Sec. IV of Hietarintiand recall the work of Halt* where the study of weak invariants was first
addressed and of Sarlet al,'® where some wrong deductions contained in Hall's work were
corrected. A systematic analysis of the cases With1 (linear invariant and M=2 (quadratic
invarian) was started in Ref. 7 and recently taken up again in Ref. 8. A more general version of
the problem concerned with quadratic invariants is mentioned in a different context in Ref. 16.
The first result one easily gets with this approach is that(B4). is readily solved as

Dy =Dw(2), (36)

that is, the leading order coefficient in the invariant isagitrary analytical function This result,
already known in the inertial case, still holds here. In Ref. 4 it was shown how, in the purely scalar
case, the strong conservation condition restricts the form of this function. In what follows we will
get analogous results when also a vector potential is present.
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One fundamental difference with what happens in the scalar case, is that equations for coef-
ficients with even and odd indexes do not decouple. This fact is due to the Hamiltonian not being
reversible in the present instance. Syst@3) is therefore very awkward to solve in the general
case. In the next two sections we present the solutions in the linear and quadratic cases at fixed and
arbitrary values of the Jacobi constant.

IV. LINEAR INVARIANTS

We start the investigation looking for systems admitting a second invariant which is a linear
function in the momenta. The ansatz is

1W=9(p+d) +S(p+ D) +K, (37)

where for the three coefficients we have used a notation which conforms with that in previous
works. The system of equations ensuing from the conservation condition is the following:

S=0, (39
K;+iQS=0, (39
R{(GY,}=0. (40)

In order to compactify formulas, from hereinafter with the subscript we denote the partial deriva-
tive with respect to the corresponding variable.

A. The general solution for linear invariants

Equation(38) agrees with(34), confirming thatS can be an arbitrary analytic function,

S=972). (41

To complete the treatment, given an arbitr&y), we must solvg39) and(40). This task is more
efficiently achieved by performing a coordinate transformation that trivializes the differential
equations. Let us consider a conformal transformatioir(w) to the new complex variable/
=X+iY given by

d
= F (W) = S(zw)). 42)
W

The explicit form of the transformation is then

w= dz (43
S2)
and we have the relation between the differential operators
d ,.d__d
dTv_F (w)dZ—SdZ. (44

Multiplying (40) by the real factorS_S the content of the curly brackets can be modified in the
following way:

SSS0),= S(SH),= (SB),. (45)

Introducing the “conformal” potential
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G=|F’G=|9%G=5%, (46)
Eq. (40) reduces to
R{G,} =0, 47
which is readily solved in
G=g(v), (48)

whereg is an arbitrary real function and, according to the definition of the coordinate transfor-
mation, Y is the imaginary part ofv.
In the new variablesv, Eq. (39), together with its complex conjugate, can be rewritten as

Ky=iQ, (49)

Ky=-iQ, (50)
where the conformal field

Q=520 (51)

has been introduced. The integrability condition for the real fundtide

R{Ky =0, (52)

with solution

K =k(Y), (53

wherek is another arbitrary real function. The conformal vector potential is then given by

K
=

Q=- (54)

An inversion of the coordinate transformation allows one to express the solution in the original
variables. The second invariant can be expressed as

1D =R{Sx+ JH{SY +K. (55)

B. Linear invariants at arbitrary energy

Equation(40), in view of (41) and recalling the definition o& in (29), can be rewritten as

R{S'(C-W) -SW}=0. (56)
If we are interested in strong integrability, namely in an invariant which is conserved for arbitrary
values of the Jacobi constant, E§6) must be independent &. Therefore, it decouples in two
independent equations: the first is
R{S (2} =0. (57)

The second turns out to be
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R{(SW,} = 0. (58)

Equation(57) means that at arbitrary energy, we are no longer free in the choice of the coordinate
transformation: we must comply with this condition which actually imposes very strong limita-
tions. It can be integrated to give

S(z) =ikz+ «a, (59

wherek is a real constant and a complex constant. We can prove that it essentially allows only
two kinds of new coordinatesa) polar coordinatesib) rotated Cartesian coordinates. To show
this, we first observe that we can exploit translations and scaling of the complex plane to further
reduce the freedom contained(B9). If k is not zero, a translation allows us to gt 0. A scaling
allows us then to sét=1. We have then the two possibilities,

(@ S2=iz, F(w=¢€", x=eYcosX, y=e"sinX, (60)

(b) S2=a, FWw =aw, x=aX-bY, y=bX+ay. (61)

Case(a) can be recognized as the transformationptdar coordinates. In fact, with the usual
notation, they are defined as

r=e”, 6=X. (62)
Solutions(48)—<54), in view of (28), are

W:W(r)z%, K=k(r), Q:%, (63)

and the second invariant turns out to be

1D =i(z2-22) + K =r20+ Kk(r). (64)

The problem is rotationally symmetric and the corresponding invariant is a generalization of the
angular momentum.

Case(b) can be recognized as the transformatiomaimted Cartesiarcoordinates. Solutions
(48)—«54), in view of (28), then give

W=W(ay-bx), K=k(ay-bx), Q:—M. (65)

The second invariant now is

1D =747+ K = ak+ by +k(ay - bx). (66)

The problem is invariant under translation along the family of straight lsnedy=const. These
two solutions are already well knowrand the above procedure can be appreciated in its effec-
tiveness.

C. Examples of weakly integrable systems with linear invariants

We may provide two interesting classes of weakly integrable systems admitting linear invari-
ants.

The first is obtained by the simple observation that, if we choose the level s@f@eit is
no longer necessary that conditigh7) be satisfied Any analytic functionS=S(z) provides a
solution through the corresponding conformal transformatior¥, s above, denotes the new
coordinate
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s
Y“’U s<z)}' (67

_K(Y(xy)
ZIS L

then the solution is given by

_9(Y(xy)
S

with g andk arbitrary real functions.

The second class of weakly integrable systems is obtained with the following trick. Let us
consider the analytic functiof(z) and consider then the conformal transformatiég) with S(z)
given by

K=k(Y(xy)), Q= (68)

1

= Ty e (69)

with ¢ constant. Recalling definitio®6), let us consider the “flat” conformal potentiélzl. In
this case, relatiog46), using(69), gives

1 2 i 1|2

G=C-W=-—=c+c(f' +f)+|f'|°. (70)

S

We can therefore interpref as the fixed value of the Jacobi constant,
c?=C, (71
and get as a consequence the family of potentials,
W(zZ,c) = - c(f'(2) + ' (D) - |f' (2)] (72)

We remark that the dynamics given by potenti@g) is defined for arbitrary values @, but it
happens to be integrable only on the surface singled out by conditipn

To complete the solution, we must write explicitly the coordinate transformation generated by
(69), that is

dz
w= | ——=cz+f(2). (73
f S(2)
Again, an arbitrary functiok(Y), with
Y =3{cz+1(2)}, (74)

will do the work. For further details on these systems we refer to Ref. 10.

V. QUADRATIC INVARIANTS

We now look for systems admitting a second invariant which is a quadratic function in the
momenta. The ansatz is

12 = (p+d)2+ Hp+ D)2+ R(p+d) + R(p+d) +K, (75)

where, beside$ and the real functiok, we now must determine the complex functiBnThe
system of equations ensuing from the conservation condition is the following:

S,=0, (76)

R+ 2iQS=0, 77
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Ks+SG+3SG+iQR=0, (78)

R{(RG =0, (79

where, in(78) we have already exploite@76), that, as usual, embodies the fact ti&is an
arbitrary analytic function.

A. Towards a general solution for quadratic invariants

System(76)—(79) is much more difficult to solve than the previous linear case. Indeed we lack
a general solution. The main reason for this difficulty is that the coupling bet@e&h and ()
produces an integrability condition fdt, through Eq.(78) and its complex conjugate, that is a
nonlinearPDE. However, we can implement the strategy to arrive as close as possible to a general
solution and, what is of great importance, we can solve the problem in the strongly integrable case,
developing an effective way to construct solutions.

This time we use a conformal transformation to the complex variaiX+iY given by

< =F/(w) = \Sizw), (80
W

so that the explicit form of the transformation is

dz
W (81)
VS(2)
Introducing the conformal potential
G=|FPo=|96= Vs, 82)
and the new complex function
~ R
R=—, (83)

Eq. (79) keeps its form in the transformed coordinates

R{(RG),} = 0. (84)

The solution of this equation is

RG =i Ky, (85)

where is an arbitrary real function.
Let us now multiply both sides af77) by

\/é . (86)

Using (83) and introducing the conformal field
a=|90, (87)
Eq. (77) transforms into
Ry +2iQ0=0. (88)

Since the conformal field is real, the solution(8B) is
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R=-4ig,, (89)
where¢ is another arbitrary real function. The factor —4 appears for later convenience. In this way,
the conformal field is given by

Q=2 (90)

At this point, to get the general solution of the unified treatment of weak and strong integra-
bility, one should try to solve the integrability condition for E8) in the light of the results
(85)—89). Let us write the integrability condition fdk which, computingK,.=K, from (78), is

JH{S'G+35G,+2SG,+2i(QR),} =0. (91

In the transformed coordinates, this becomes

HGumd + (RO} =0. (92
From (85) and(88) we have
oo ims 1= ,__i_ G2k 2\ _
RO = RRy= 2 (R)5=- ;G K)w (93)
so that(92) can be rewritten as
HGuwh = §91 (G K- (94

We can try to solve this equation after specifyikig Unfortunately, the equation is highly non-
linear except in the rather trivial case whigris constant, so it appears to be very difficult to solve

it in the general case. We direct our attention attempting to solve the more limited but fundamental
case of strong integrability.

B. Quadratic invariants at arbitrary energy

Starting again with(79), we see that, in view of definitio(29), it can be rewritten as

R{R,(C - W) - RW} = 0. (95)

If Ris independent o€, as is the case under study, in order to satisfy this equation at arbitrary
values of the energy, it decouples in two independent equations, the first is

R{R}=0, (96)
the second is
R{RW,} =0. (97)
Equation(96) is solved by introducing the arbitrary real functignso that
R=-4diy: (98
This allows us to solve equatiq®7) for W in the form

W=W(7), (99)

that isW is, at this stage, an arbitrary function of the argument.
Comparing(98) with (89) and taking into account definitiof83), we get the relation
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\/S__ng |$§W: Tw- (100

Solving the integrability condition fom with a given form ofS allows us to find¢ (and vice
versg: Eqg. (100) is deceivingly simple; we will see later that it is of some concern. Here we
remark that the route followed to treat E@9) reverted to the original physical coordinates,
since they lead to the simple result(®8). However, Eq(90) is valid in general, it is the simplest
way in which we can solve for the vector potential and is expressed in the new coordinates
This result and the development below show how working in the new coordinates is advantageous
in this context too.
In the meantime we must determine the form&ahposed by strong integrability. Examining
the integrability conditior{91), the usual condition of independence of the results ftbimposes
the following constraints on the form &

J{S'(»}=0. (101

This result, which is valid in the scalar case also, is a natural extension of what was found in the
linear case.
Coming back to Eq(100), we note that, using real coordinates, we have

1S1éx = mx, (102)

SEv = (103
It can be proveﬁ that condition(101) is equivalent to

|Sxy=0, (104)
so that we can also write
IS = AX) +B(Y), (105)

with A andB determined by the specific form & Therefore, Eqs(102 and(103) generate the
following differential equations for the functiong and &

Ay +B = 2(A+B) ¢y =0, (106

A& +B'Ex+ 2(A+B)éxy=0. (107

In view of (98), that can be rewritten as

ISR=~4iny (108)
and of (87), integrability condition(92) can be written in the form

3{Guwt + 1SH{RQ,} =0, (109

or, in real coordinates,

éxv + 2(nxQy = 7v(ly) = 0. (110

If we want to exploit the result established (99), we must resume the physical potentyll
through

G=lg(Cc-w). (111)
Using (105 we have
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Gyy=—A'Wy — B'Wy — (A+ B)Wyy (112
and so(110) is
(A+B)Wyy + A"Wy + B"Wy = 2(7xdy = 7y(dx). (113
But (99) tells us that
Wy = W' (77), Wy =W (7),  Wyxy=nxiyW' + myW', (114
so that(113) becomes
2 (Qy QO
W'() + 3—2CW () = (—Y——X). (115
XY A+B\ 7y ¢

This is the best form we attain to express the integrability condition for the potential: we see that
in general it implies that

YL = (), (116
XY
where® is arbitrary.
Therefore, the strategy to find strongly integrable systems with scalar and vector potentials
supporting quadratic invariants is to choose a suit&btethe class determined by conditi¢h01)
(and thereforé\ andB) and solvg106) and(107) to find 7(X,Y) and£(X,Y); to solve(90) to find

0= 5(&xx+ &vy) (117
and usg87) to find
Q
QX,Y) = A+B (118
and, finally, try to solvg115) for
W=W(7(X,Y)) (119

taking into account116).

C. General form of the quadratic invariant

In the next section we apply the strategy delineated above illustrating how already known and
new integrable systems are determined. We end this section with a closer look at the structure of
the quadratic invariant.

In the new variablesy, w, together with the conformal transformation, it is natural to intro-
duce the new time variable such that

_dt
R
We can use the apex to also denote the derivative with respeavithout risk of confusion with

other derivatives with respect to coordinates. Equations of mg@#anthen assume the following
form:

dr (120

W'+ 2i0wW' = 2Gy;. (121)

In view of the above positions, the quadratic invariant is most simply expressed as
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1@ =R{W)2+RW}+K, (122
or, in terms of real variables,
12 = 21(X)2 = (Y)?] = 2(&Y" + &X) +K. (123
We recall that the scaldf, to be found by integrating the transformed versior(#8), namely
Ky+ G, +iQR=0, (124
is a function of the form

K = K(w,w:C). (129

In the present case of strong integrability, in view(d05), it turns out that this function can be
expressed as

K=k+C(B-A), (126)

andk can be found by integrating the system

Ky — Wy + 406, = 0, (127

ky + Wy = 40, =0, (128
Where\7V:(A+B)W. From (123), using(126) and

_ E(X,)2+ (Yr)Z .

; 129
2 A+B (129
the general form of the invariant is then
1
1012 [BOCY - (Y] = 26 + X))+ (B- AW+ k (130
Observing that the relations between velocities in the two gauges are given by
X' =R{F'}x+3{F'}y, (131
Y' == J{F'Ix+R{F'}ly, (132

we can eventually transform the invariant in Cartesian coordinates. Transformation rules automati-
cally account also for the change of the time variable according26).
VI. SOLUTIONS WITH QUADRATIC INVARIANTS

Let us recall the coordinate systems given by the condition for the existence of strong qua-
dratic invariants. We observe that the functi®mve must use is obtained by integrati(i1) so
that

S(z2)=cZ+pBz+a, (133

wherec is a real constant an@, a complex constants. Exploiting the freedom of making trans-
lations, rotations and scaling in the complex plane, we have the following four inequivalent cases
(for further details we refer to Refs. 4 and)18

(@ S2z=a FWw=aw, x=aX-bY, y=bX+ay, (139
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(b) S2=7 Fw=¢e% x=efcosY, y=e€SsinY, (135
(c) S(20=4z, F(w)=w? x=X?-Y? y=2XY, (136
(d) S(z2=7+A% F(w)=Asinhw, (137
x=AsinhXcosY, y=AcoshXsinY. (138

Case(a) gives the rotated Cartesian coordinatgsindard Cartesian coordinateseif 1). Case
(b) gives again the polar coordinates. Cdsg gives the parabolic coordinates which are also
referred to ad evi—Civita coordinates(the factor 4 in the definition of appears just for this
reason. Finally, casgd) produces the elliptical coordinates. For the sake of completeness, we list,
for each of the four cases, the conformal factor and functim@sdB introduced in(105):

@ |8=1, A=B=3, (139

(b) |9=e, A=e B=0, (140
(€ [9=4(X2+Y?), A=4X% B=4Y? (141
(d) |9 =A%sint? X+ cogY), (142
A=A%sinkf X, B=A%codY. (143

A. Cartesian coordinates

Let us start with the simplest caé®, the Cartesian one. As the structure of the solution will
show in the end, there is no need to work with rotated coordinates, therefore we eanlsahd
make the trivial identificatiorX=x andY=y. Equationg102) and(103) are

7= & (144
/i gy- (145
The solution is
=13 +g(y), (146)
=100 -g(y), (147
with f andg arbitrary. From(117) and(118), the vector field is
Q=5("+g" (148)
and theR function
R=-2(g" +if’). (149
Equation(113) is
W,y - (g'f”+f'g") =0. (150

From (99) we have thatW=W(f(x)-g(y)), so that
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W,y =-f'g'W’ (151
and(150) becomes
, n gH/ B
W'+ —+ =0, (152
f g

A further differentiation byx andy gives

1 d f/// 1 d g///
—— = ——=—=2a=-W 153
Faxf  gdyg o (153

with a real constant. We then get two equations fand g,

f"=af?+bf+c, (154)

g/':—agz+dg+e, (155)

in agreement with the work of Dorizat al,’ that can be integrated for various choices of the
constants, b, ¢, d, e. The potentials in terms df andg are

W= g(g—f)3—¥(g—f)2+(c—e+ m)(g-f), (156

20 =a(f?- g’ +bf+dg+c+e, (157

wherem is another constant. Integrating E@$27) and(128) gives then
K=afg(f+g) +(b-d)fg-a(f®+g®) - 3(3b+d)f2+ 3(3d + b)g? - (3c + m+e)f + (c— m+ 3e)g.
(158

The fundamental example of the harmonic oscillator is obtained with the choice

a=b=d=0, (159
so that
f=1c¥, (160
g=3ey, (162)
and the potentials are
W=1(c-e+m)(ey’ - cxd), (162
20 =c+e. (163

We remark that, in this case, the vector field isanstant angular velocitand that the isotropic
oscillator only exists when the angular velocity vanishes. The second invariant in this case is

12 = 2(52 - y?) - 2(cxy+ eyX + 3[(c— m+ 3e)ey? — (3c + m+ e)ci]. (164)

B. Polar coordinates

In case(b), the polar coordinates, we recall that now



012701-17  Integrable Hamiltonians with vector potentials J. Math. Phys. 46, 012701 (2005)

r=e, 6=Y (165
and remark the difference of this relation with respeait?) obtained in the linear case. We have
|S=A=e*=r2 B=0. (166
Equation(106) becomes
2e”(nxy = my) =0, (167)
which is solved by
n=€g(Y) +f(X), (168)

with f andg arbitrary. From(100) we then have

E=-efg+ f e 2" (X)dX. (169
From (117) and(118), the velocity field is

20 =eZA¢=e¥(f" - 2f") —e3X(g" +9). (170
Condition(116) says that

= €g(Y) + ' (X) = D(eXg(Y) + f(X)). (171

There are two ways in whictl71) can be accomplished: the firstgsconst and it is easy to see
that in this way we are actually taken back to the spherically symmetric case to which actually a
linear invariant is associated. We can taleX) andW(X) arbitrarily whereas, to find the vector
field, we observe that

& (X) =75/ (X), (172
so that
20) = e—2X§r/ - e—4X( 77// _ 277r) - e—2X(e—2X77/)r ) (173)

To show that this solution is equivalent to that obtained in the linear case, we compute the scalar
k by integrating(127) to get

K2(X) = W - (e 7). (174)

Observing that, in polar coordinates, relatid20) between old and new time is

dt
dr=— (1795
r
and using
Y’ =129, (176)
expression130) becomes
. . "2
|(2>:—r402—27;’0—(?4) . 77

In the linear case, recalling solutigf4), we obtain
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1® =126+ KY(r), (179
where, from(63),
kY(r)=2 f rQdr=2 f e dX. (179
Using (173) this becomes
kKP(r)=e 2y =12y, (180

so that, comparingl77) with (178), we see that

1@ = - (1)2, (181

The second possibility of satisfying conditiqi71) is to havef=const and the constant,
without any loss of generality, can be set equal to zero. Therefore, we have

n=€'g(Y) (182
and
E=-eg. (183
To find the potential, we must sol&15) which, using(182) and(170), is
1
eGng/
The simplest way in which the right-hand side is also a functiom ¢f given by the condition

3
W'(7) + ;W’(n) =- (g"g+39'g’ +49'9). (184

!’

g"g+39'g' +49'g= ag—, (189

with «a constant, so thatl84) becomes

3 o
W/(7) + =W (7) + 5 =0 (186
n n
with solution
B a
w=-5 - — (187)
7 8r

To find explicit solution we must determine the possible formgafhich can be obtained by
integrating(185) twice,

=5, (189

with y and & constants. All this is in agreement with the results in McSween and Wint toitz
which we refer.

Since in the approach with the energy constraint, the coefficients appearing in the invariant
must be supplemented by a further substitution in order to get the final physical expression, for the
sake of completeness, we work out a specific example. To ease the comparison with the results in
Ref. 8, we use explicitly polar coordinates ag1%5). The simplest case in the solution above is
given by the choicex=0. Equation(188) has the solution
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g(f) =vVa+bcos X (189
with the constants andb given by
y=a’-b? &=2a. (190

From (187) and(170), the potential and velocity field are given, respectively, by

_ B
W= r’(a+ b cos ) (193

and

b2 _ a2
0= .
2r3(a+ b cos )32

(192
To find the invariant, we can ug&30). Equationg127) and(128) can easily be integrated to get

k=-r’W-r"2g(g+g"). (193

so that expressio(iL30) becomes

: o 2 +q’
12 = 4%+ 2(rg0—rg’)+g—’§+w. (194
In the specific example afL89) we get
- 2bsing . ——— - 1 a?-b?
1@ =r4¢? + ————==t+2\a+bcos Wro+ ( 5 +2ﬁ>. (195
Vya+bcosX a+bcos¥» r

We remark that the small discrepancy(it95) with respect to the analogous expression reported
in Ref. 8 is due to a difference of a factor of 2 in the definitioflb&s can be seen from E{1.92).

C. Parabolic coordinates

We use the Levi—Civita representation of the parabolic coordinates introduced inczase
above and mostly used in celestial mechanical applications. As a first step, the general strategy we
depicted at the end of Sec. V B prescribes to determine the functiamsl £ satisfying equations
(106) and(107). According to(141), we have

A=4X% B=4Y?, (196
so that Eq(106) becomes

X77Y+Y77X_(X2+Y2)77XY:O' (197)

A fairly general solution of this PDE can be represented in the following form:

(X,Y) = J F(a)V(X%2+a)(Y2-a)da+ f G(a) OC+ ¥%)* da (199
U] (O +a)(Y2-a)¥2 "
wherea is an arbitrary real parameter akdand G two arbitrary smooth functions.
The subsequent steps should consist in determining the functiand() and finally to solve
for the potentiaW/( 7). However, we observe that it is not easy to satisfy the consttal® with
a too general expression faf. therefore, we first find a suitable form of this function and then
proceed as above. A simple but nontrivial possibility is that given by the position
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F=cdla-b), G=0 (199

in (198, whereé(a) is the Dirac function. This choice gives the simplest separable solution of the
differential equation(197). Therefore, we have

7(X,Y) = cV(X* +b)(Y* - b), (200
which is easily shown to satisfy conditiqia16) in the form
Xy =l
X M
With solution (200), Egs.(106) and(107) are readily solved fo,

c X?+b
X,Y) = = arctany/ —5——, 202
EXY) = arctam| 75— (202

so that, from(117), the conformal vector field is

(201)

pobe XY (203
8 ((C+b)(Y*-b)**
From this, Eq.(118) gives
Q cb 1
Q=——F— ==, 204
4X2+Y?) 3297 (209
This result suggests to set
c=2 (205
in order to simplify formulas and we have the physical vector field from
b [(y2 2
20=—5, 7(X,Y)=2/(X2+b)(Y2- D). (206)
i

An important consequence of this result is that, together Witk) too depends on the coordinates
only through#. This implies that the right-hand side of Ed15) for W vanishes, so that, taking
into account(201), we get simply

3
W'(m) + ;W’(n) =0. (207

The solution for the scalar potential is then

w=L5 (209

and we are actually led to a situation analogous to that encountered above in the example exam-
ined in polar coordinates. It is interesting to remark that pote(2@8) is separable if considered
in the purely scalar situation, since, usi(gP0), we get

__ B 1 1
W= 4(X2+Y2)(X2+ b v2o b)' (209

Reverting to Cartesian coordinates through



012701-21 Integrable Hamiltonians with vector potentials J. Math. Phys. 46, 012701 (2005)

I
=
N‘+
RS
<
I
=
N‘|
<

X (210
the scalar and vector potentials are, respectively, given by
B
W=———— 211
y? = 4b(x + b) (219
and
0= b (212
~2y? - 4b(x + b))¥
The second invariant using parabolic coordinates is
1 Y(X2+b)X = X(Y2-b)Y' b+88(Y?-X>-Db
|(2) = Z[YZ(XI)Z _ XZ(Y/)Z] + ( ) ( ) n zﬁ( : ) ,
X2+Y (X2+Y?)V(X2+b)(Y2=b) 4(X*+Db)(Y*-b)
(213

where ther time variable is used and, therefore, it is conserved along the solution of the trans-
formed equations of motion of the for@21). Using relationg131) and(132) between velocities
in the two gauges,

X! =V2(r + X)X+ V2(r = x)V, (214)

Y =\2(r + )Y = V2(r = X)X, (219

we can transform the invariant into Cartesian coordinates,

yX+ 2by N b-8B(x+h)

2\y2—db(x+b) 4(y?>=4b(x+b))’ (216

2= (yx- )y +

D. Elliptical coordinates

It turns out that even in elliptical coordinates it is possible to find nontrivial solutions with a
structure closely related to that seen in the examples detailed above in polar and parabolic coor-
dinates. In addition, in elliptical coordinates, a solution with a constant vector field also exists
(constant angular velocitywhereas this possibility appears to be absent in parabolic coordinates.

A common feature of all these cases is that both the scalar and vector poté&Ntéadd(), can
be expressed only in terms gf This implies that the right-hand side of §3415) for W vanishes,
so that, taking into accourii16), this common feature is embodied in the equation

W'(7) + ®(7)W'(7) =0, (217

with suitable®. Analogously to what is seen in the polar cases, other solutions may very well exist
but they are not so easy to find.
According to(143), we now have

A=A%sintt X, B=A2cogY. (218
In this case Eq(106) becomes

sinhX coshXzy — sinY cosY 7y — (sint? X + cog Y) ¢y = 0. (219

A simple solution of this PDE is the following:
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7(X,Y) = aA?(sint? X - cog Y) + bA*(sini? X + cog Y)?, (220
with a andb constants. Using this solution, Eq406) and (107) give for &,

&X,Y) = aln[A%(sint? X + cog )] + 2bA%(cosh 2 - cos 2). (221

Computing the conformal vector potential fraitil7), we see that the first solution is trivial since
its Laplacian vanishes giving a null vector field. We remark that the analogous phenomenon also
occurs in the parabolic coordinates case, where it is possible to find several additional solutions of
Eq. (197 generating a vanishing vector field.

The second solution appearing (21) instead gives

Q = bA2(cosh X + cos 2) = 2bA2(sink? X + co2 Y). (222)

We get that the conformal field is proportional to the conformal fafSoso that, from(118), we
have that the vector field is constant

0 =2b=Q,. (223
Condition (116) for the nontrivial solution220) with a=0 is

1
XY _ = (2249
N 27
so that Eq(115) for W is
! 3 !
W(n)+2—W(n)=0, (229
n
whose solution is
=, (226
\/
or, using again220),
B B
W(X,Y)=-—== , , 22
*) IS A?(sint? X+ cogY) (227

wherea and B are arbitrary constants. This solution is the simplest separable scalar potential in
elliptical coordinates, which is therefore shown to be integrable also in a uniformly rotating
system: this result is already known for its application in the modeling of rotating gaFa?dema
second invariant130) using elliptical coordinates is

1 1
2) — N2 _ i 1\2 - H I _ o ’
112 = S X+ co2 Y[cos’- Y(X')? - sintP(Y")?] + Zﬂo(sm 2YX' - sinh XY’)
sinP X-cogY ., . )
plChcIvanpes Tviy Q&(sink? X + cog )2 (228

Reverting to Cartesian coordinates through

2A2sint? X =12 - A%+ \(r2 + A2)2 - 4A%2 (229

20%SiP Y =12+ A2 (12 + A)2 - 4A%2, (230)

the scalar potential becomes
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B

/ 231
v+ 20%(x% - y?) + A* (230

W(x,y) =

and, using relationg131) and(132) between velocities in the two gauges, we can transform the
invariant into Cartesian coordinates,

1= (yx— %)% = ABC + (A2 - %) (2QqyX — W(X,Y))

+200(A% + r2)xy + Q3(r* + 22 - y?) + A%). (232

We pass now to investigate a more complex class of systems. A general solution(218q.
is

7(X,Y) = f F(a)V(A? sink? X + a)(a—- A% co? Y)da

(A% sink? X+ A% cog Y)?
+ | G@) 7 2 ada,
((A%sink? X+ a)(a— A% cogY))
wherea is an arbitrary real parameter aRcandG are two arbitrary smooth functions. Comparing

this solution with that 0{198) we can guess analogous developments. Therefore we try with the
simple solution

(233

F=d8a-b), G=0, (239

which corresponds to the simplest separable solution of the differential eq(2ti®n Therefore,
we have

7(X,Y) = V(A2 sintt X + b)(b— A2 cod Y), (235)

which satisfies conditioi116) in the same form as i(201). With solution(235), Egs.(106) and
(107) give the following expression fof:

b+ A2 sink? X
&(X,Y) =—arctan m, (236

so that, from(117), the conformal vector field is

bA?(b - A?)(sint X + cog Y)

0= ((A? sint? X + b)(b— A2 cog Y))¥? (237
From this, Eq(118) gives
_ 0 _bb-A?
2= A?(sint? X + cog Y) - 297 (238

As remarked above, from this result it follows that the right-hand side of Hdp for W vanishes,
so that, taking into accourni201), we get again{207) so that the solution for the scalar potential
is

B B

W= 7 " (A%sin? X +b)(b—-AZcog Y)

(239

Even potentia(239) is separable if considered in the purely scalar situation, since it can be written
in the form
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_ B 1 B 1
"= KoGsini? X+ co Y)<b—A2 cod Y AZSinth+b>' (240

Using the explicit coordinate transformati@229) and(230), the scalar and vector potentials are,
respectively, given by

B
W= 247
by? + (b — A%)(x*+ b) (249
and
e b(b- A% (242)
~ 2(by?+ (b= A%)( + b)) ¥’
Finally, the second invariant using elliptical coordinates is
@ 2 COS Y(X')? ~sintf(Y)? | 1 (Sin oy [PHAZSINEX
~ sinEX+cofY sink X+ cog Y b-A%cogY
_ b-A?cosY b(A% - b) + 2B(A%(cog Y - sint? X) — b)
—sinh X 7 Y|+ > 5 ,
b+ A? sink? X (AZsink? X + b)(b— A% cog Y)
whereas using Cartesian coordinates is given by
o . byX+ (A% - b)x b(b-A?) +2B8(b - A2+ X% +y?
12)= (yx- xi)? - A%+ 2L QDY Bb= )+ 2Pb A X +y)
Vby? + (b - A?)(x% + b) by? + (b = A%)(x* +b)
(243

VIl. CONCLUDING REMARKS

We have investigated Hamiltonian systems with vector potentials admitting a second invariant
which is linear or quadratic in the momenta. In our approach, weak and strong invariants are
treated in a unified setting where the strong invariants emerge as special cases. As for scalar
potentials, the integrable systems can be greatly simplified by introducing certain standardized
coordinates, as given ifl34—1398). It is a striking result that these standardized coordinate
systems for systems with strong invariants exactly coincide with the classical separable coordi-
nates for scalar potentials.

This work is an extension and improvement of the approach to integrable vector potential
Hamiltonians which was proposed in Ref. 10. However, there still remain issues which need
clarification. In particular, it should be possible to obtain a better understanding of the integrability
conditions, especially the role of the conditiohil6) for the structure of the strongly invariant
case.

ACKNOWLEDGMENT

The authors thank J. Hietarinta for having pointed out Refs. 11 and 12 of which we were
unaware at the completion of this work.

1G. Darboux, Archives Néerlandaiséi) VI, 371 (1901).

2E. T. Whittaker,A Treatise on the Analytical Dynamics of Particles and Rigid Bqdiéis ed.(Cambridge University
Press, Cambridge, 1987

3J. Hietarinta, Phys. Repl47, 87 (1987).

“K. Rosquist and G. Pucacco, J. Phys28, 3235(1995.

5M. Karlovini and K. Rosquist, J. Math. Phy41, 370(2000.

5M. Karlovini, G. Pucacco, K. Rosquist, and L. Samuelsson, J. Math. P4§s4041(2002.

"B. Dorizzi, B. Grammaticos, L. Ramani, and P. Winternitz, J. Math. P6;5.3070(1985.

8E. McSween and P. Winternitz, J. Math. Phykl, 2957(2000.



012701-25 Integrable Hamiltonians with vector potentials J. Math. Phys. 46, 012701 (2005)

9J. Bérubé and P. Winternitz, math-ph/0311051.

10G. Pucacco, Celest. Mech. Dyn. Astrain press.

MH. M. Yehia, J. Phys. A25, 197 (1992.

124, M. Yehia, J. Phys. A32, 859(1999.

133, Benenti, C. Chanu, and G. Rastelli, J. Math. PH&. 2065 (2007).

L. S. Hall, Physica D8, 90 (1983.

15W. Sarlet, P. G. L. Leach, and F. Cantrijn, Physical, 87 (1985.

=Y/ Ferapontov and A. P. Fordy, PhysicaI®8 350(1997).

G. Pucacco and K. Rosquist, Celest. Mech. Dyn. Asti®8. 185 (2004).

18G. Pucacco and K. Rosquist, Rroceedings of the Meeting on Symmetry and Perturbation Theory—SPTe20@2 by
S. Abenda, G. Gaeta, and S. Walck@forld Scientific, Singapore, 2003

19p. 0. vandervoort, Astrophys. 232 91 (1979.



JOURNAL OF MATHEMATICAL PHYSICS46, 012702(2005

The difficulty of symplectic analysis with second class
systems

A. Shirzad® and M. Mojiri®

Department of Physics, Isfahan University of Technology, Isfahan, Iran and

Institute for Studies in Theoretical Physics and Mathematics, P.O. Box 5531, Tehran
19395, Iran

(Received 30 April 2004; accepted 30 September 2004; published online 27 December 2004

Using the basic concepts of the chain by chain method we show that the symplectic
analysis, which was claimed to be equivalent to the usual Dirac method, fails when
second class constraints are present. We propose a maodification in symplectic
analysis that solves the problem. 2005 American Institute of Physics.
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I. INTRODUCTION

There are some attempts to study a constrained system in the framework of first order
Lagrangian-® The coordinates appearing in a first order Lagrangian are in fact the phase space
coordinates. The Euler—Lagrange equations of motion of a first order Lagrangian in an ordinary
(nonconstrainedsystem are the same as the canonical equations of motion. The kinetic term in a
first order Lagrangian constitutes of a one-form whose exterior derivative appears in the equations
of motion. The resulted two-form, called the symplectic tensor, is singular for a constrained
system. If the system is not constrained, usually the inverse of the symplectic tensor exists and
provides the fundamental Poisson brackegis exclude degenerate systems discussed in Refs. 3
and 4 in which the symplectic tensor may have a lower rank in some regions of the phage space

The properties of a constrained system can be determined by trying to overcome the singu-
larity of the symplectic tensor. Faddeev and Jackiwed the Darboux theorem to separate ca-
nonical and noncanonical coordinates. They solved the equations of motion for noncanonical
coordinates either to decrease the degrees of singularity of the symplectic tensor or to find the next
level constraints.

Then using a special system of coordinates, the authors of Ref. 6 showed that the Faddeev—
Jackiw approach is essentially equivalent to the usual Dirac méttoda parallel approach,
known as symplectic analy§T§10ne extends the phase space to include the Lagrange multipliers.

In this approach the consistency of constraints at each level adds some additional elements to the
symplectic tensor. In other words, the kinetic part of fiest orde)p Lagrangian is responsible to
impose the consistency conditions.

The important point in most papers written in the Faddeev—Jackiw method or symplectic
analysis is that they often show their results for the constraints in the first level andebane
that the same thing would be repeated at any level. However, the whole procedure of studying the
singularities of symplectic tensor, demonstrates some global aspects. For example, some questions
that may arise are as follows:

What happens, after all, to the symplectic tensor? Is it ultimately singular? How many degrees
of singularity may it have? What is the relation of ultimate singularities with the gauge symmetries
of the system and so on? In Ref. 12 we showed that the symplectic analysis gives, at each step, the
same results as the traditional Dirac metliodthe framework othe level by level approaghThe

¥E|ectronic mail: shirzad@ipm.ir
PElectronic mail: mojiri@sepahan.iut.ac.ir
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symplectic analysis may also be studied in the frameworkhefchain by chain approa&ﬁto
obtain the Dirac constraints.

Meanwhile, some recent observatidshows that in some examples the result of symplectic
analysis and the well-established method of Dirac are not the same. This creates serious doubt
about the validity of the symplectic analysis. Therefore, it is worth studying the origin of the
difference between this approach and that of Dirdtis is the aim of this paper. In the next
section we first review the basic concept of symplectic approach as given in Ref. 12. As we will
show the symplectic analysis is equivalent to a special procedure in the Dirac approach in which
one uses the extended Hamiltonian at each level of consistency. In Sec. Il we will show that in the
framework of the Dirac method one is not allowed to use an extended Hamiltonian when there
exist second class constraints. The important point to be emphasized is that this result can be
understood more clearly in the framework of the chain by chain method. In Sec. IV we show that
for a one chain system with second class constraints the symplectic analysis as proposed in the
literature fails. This result can be simply generalized to the general case of a multichain system.
When recognizing the origin of the problem, we give our prescription to solve it in Sec. V. Finally
in Sec. VI we give an example.

The last point to be noticed is that the problem would not show itself for systems with two
levels of constraints. As we will show, this is the case for second class systems with at least four
levels of constraints. That is the reason for the fact that the problem does not appear if one
considers just first level constraints.

Il. REVIEW OF SYMPLECTIC APPROACH

Consider a phase space with coordinates=1, ..., X) specified by the first order Lagrang-
ian,

L=a(y)y' - H(y), (1)
whereH(y) is the canonical Hamiltonian of the system. The equations of motion read
fiy' = aH, 2
whered,=d/dy' and the presymplectic tensfy is defined as

fij = agigi(y) — da(y). (3

We denote it in matrix notation as This matrix is invertible for a regular system. L&t be the
components of the inversé;*. From(2) we have

Yy ={y.H}, (4)
where the Poisson brackefs are defined as
{F(y),G(y)} = fIgFa,G. 5
If fis singular, then using the Darboux theorem, as shown in Ref. 5, one can choose the indepen-
dent coordinategy’®,\') such that
L=ay' - \Noy) —H(y"), (6)
wheref;B:aaab—&Ba; is invertible. This shows that one can consider a system with a singular
tensorf;;, as a regular one described by
L=ay “~H(y") (7)

together with the primary constrainds(y’). In other words, without losing the generality one can
assume that one is at first given the first order Lagrangignwith a regular presymplectic
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two-form (3), and then the set of primary constraidtg) (u=1,... M) are applied to the system.
In this way the system is described by the Lagrangian,

L=ay -\ - H(y), )

in the extended spadg',\*). The equations of motio(2) should be replaced in matrix form by

(é 8><y> :<qi|:>> (9)

which is equivalent to Eq2) together with the constraint equaﬂo@é '=0 (u=1,... M).
Now one should impose the consistency condltldvﬁé 0. Todo thIS one should extend the

space to include new variableg* and add the termyﬂfb(l) (or equivalently -17“<I><l)) to the
Lagrangian(8). This leads in the extended spage\, ») to 'the equations

f 0 A\ly oM
0 0 0f|fx]|=|®® |, (10
-A 0 0/\5 0

where the elements of the rectangular matiare given by

A= gDl (12)
However, nothing would be lost if one forgets about the variakteand reduces the system to the
Lagrangian
) R 7P N A
LY =ay - 7@ - H(y). (12)
This leads to the symplectic two-form,

_(f A)
F= % o) (13

in the (2K +M)-dimensional space of variabl&s= (y', 7). It should be noted that the Lagrangian
LY in Eq. (12) is the same as Eq8) in which \* is replaced by#*. This means that the

derivatives»* have the same role as Lagrangian multipli¢scorresponding to primary con-

straints in the total Hamiltonian

Hr=H+ 0. (14)

In other words, if some ofy*'s are found by the dynamical equations of the system, then the
corresponding Lagrange multipliers are obtained. In the Dirac approtis would be the case if
there exist some second class constraints.

The equations of motion due to the Lagrangidh can be written in matrix notation as

FY =oH. (15)

Using operations that keep the determinant invariant, it is easy to show that

f A -
- )z(detf)(detAf'lA). (16)

detF = de(
0 Af'A

Since def # 0, F would be singular iIC=Af"A is singular. Using5) and (11) we have
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C,,={0P, 0V}, (17)

Suppose rank(C)=M" where M”"<M. This means thatF possessesM’'=M-M" null-
eigenvectors. One can, in principle, dividéﬂl)’s in two setsfbij,) and cpf) such that

@M ~o,

@000}~ Cpo, detCpn #0, (18)

where the weak equality symbsi means equality on the surface of the constraints already known
(here, the primary constraintsThe matrixA can be decomposed & andA” such that

1
Ap,’i = 0|q)£/.’)’

A;L”i = a,cbij;,) (19)

Accordingly the symplectic tensdt can be written as

f AH A!
F=|-A" 0 0 [ (20)
-A 0 O
Consider the rectangular matrix
(A'F1,0,1), (1)

which hasM’ rows and K+M columns. Using(18) one can show that its rows are left null-
eigenvectors of~. Multiplying (21) with the equations of motionil5) gives the second level
constraints as

o2 ~ (@) H} =0. (22)

On the other hand; in (20) has an invertible sub-block

.I: A//
Finv = (_Z,l 0 ) (23)

with the inverse

(f—l _ f—lAHC//—l’A//f—l — f—lA//C//—l)

El-= ~ (24)
inv C//—lA//f—l C”_l
This can solve the equations of moti@tb) for variablesiy“" to give
7= - @) HY, (25)
whereC#"" is the inverse ofC,»,». Inserting this in the Lagrangiaf12) gives
LW =a(y)y - 7/@) - HOy), (26

where

"o

H® = H ~{H, 0} a). (27)
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In this way a number of Lagrange multipliers corresponding to the second class constraints are
derived whose effect is only replacing the canonical Hamiltofamith HY. Now we can forget
about them and suppose that we are given the primary constrhmtsand the second level
constralnt&ﬁ . Next, we should consider the consstencyhﬁ‘f and add the term 77”<I> @ to the
LagranglanL(l> Renaming the previoug*’s as 7%, the new Lagranglan would be

LE=a )y - P = BP0 ~H() (28)
this gives the symplectic two-form

f AL AR
FO=|-A® 0 O (29
-A@ 0 0

in the spacdy, 7, 7,). Assuming that the composed matfix= (A© , AV), F@ has the same form
as(13). One should again proceed in the same way to find the null-eigenvectors as well as the
invertible sub-block oF?. The process goes on in this and the subsequent steps as explained in
more detail in Ref. 12.

The important point to be emphasized is that the Lagrangian,

n
L™ =a(y)y' - 2 7@y ~H™(y), (30
k=1

at thenth level, say, is equivalent to a system with extended Hamiltonian,

HEY = HO Y+ >\l (3

at that level. In other words, the symplectic analysis is equivalent to the Dirac approach in the
context of the level by level method provided that at each level one adds the new constraints with
the corresponding Lagrange multipliers to the Hamiltonian. In fact this slight difference with the
standard Dirac method may lead to some difficulties as we will see in the following section.

lIl. THE PROBLEM WITH EXTENDED HAMILTONIAN

The extended Hamiltonian formalism is well known in the context of first class
constraints>*®In fact, it can be shown that the dynamical equation

g:{gvHE}v (32)

leads to the correct equation of motion provided thpaé a gauge invariant quantity. In E¢B2)
the extended HamiltoniaH is defined as

He=H+ "D, (33)

where ®,,, are only first class constraintprimary or secondapy For a first class system, the
extended Hamiltonian can also be used step by step during the process of producing the con-
straints. In other words, when all of the constraints are first class, there is no difference whether
one usesb={® H} or ®={d H}.

Now we show that the extended Hamiltonian formalism in the Dirac approach is not suitable
when second class constraints are present. We show this point for a system with only one primary
constraint, i.e., a one-chain system in the language of chain by chain method. We remember that
for such a system level by level and chain by chain methods coincide.

Consider a system with the canonical Hamiltonk#ty) and one primary constraid™. The
total Hamiltonian reads
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Hr=H+xdW. (34

Suppose the consistency &% leads to®?={®D H}. Then®® emerges a$d?,H}, and so
on. The iterative process that produces the constraints is described by

O™ ={dM H}. (35)

The above procedure progresses un{ds8’,H{} =0 or {®N dD1 0 at the last stepl. In the
former case the constraints in the chain are first class, i.e., commute with eacFFtWhée; in the
latter all the constraints are second class which means that the matrix

C"M={d™, oM} (36)
is invertible. In this case the Lagrange multipllemould finally be determined as
L)
- {(D(N)'q)(l)}'

Using the Jacobi identity, it is shown in Ref. 13 that the ma@iX' in Eg. (36) has the following
form:

(37

0 0o - 0 cWN
0 0 .. C2(N—1) C2N
c=| : : : (38)
o ciN-b2 ... c(N-DIN-D)  (N-DN
CNl CNZ . CN(N—l) CNN
In other words,
{dD PN =0 ifi+j=<N. (39
Moreover using the Jacobi identity one can show fr@%) that
{q)(l)'(D(N)} ~ — {q)(Z),q)(N-l)} ~ o= (- 1)[(N/2)-1]{¢N/2,q)[(N/Z)Jrl]} +0. (40)

Remember thal is the number of second class constraints and necessarily should be even.
Now suppose that in order to define the dynamics of the system at somen|ered wishes
to use the extended Hamiltonian,

n

HO =H + > AW, (41)
k=1

If n<N/2 then from(38) the consistency of the constrai®" gives

OO = (@M HIDL ~ (@™ Hy, (42)

which by (35), is the same a®™?. However at leve(N/2)+1 the consistency ebl(NV2+1 ysing
HLEV2* gives

C'I)[(N/2)+1] — {@[(N/2)+1],H} + )\NIZ{(D[(le)+1]'q)N/2}_ (43)

As is apparent from(40) the above equation solves the Lagrange multipkige. There is no
justification to keeg® N2+ H} as the next constrai®V2+2, In order to knit the second class
chain up to the last elemedt™, one is just allowed to use the total Hamiltoni¢g#). In other
words, the second half of the chain can be derived if only the primary cons#iris present in

the corresponding Hamiltonian. As explained in the preceding section, using the standard sym-
plectic analysis is equivalent to using the extended Hamiltonian formalism described above. So
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one should expect some contradiction in symplectic analysis when second class constraints are
present. In the next section we will show the essence of this contradiction for a one chain system
and propose a method to resolve it.

IV. SECOND CLASS ONE CHAIN IN SYMPLECTIC ANALYSIS

According to the algorithm given in Sec. Il, given the canonical Hamiltoridy) and the
primary constraintbf), at the first step of consistency one should consider the Lagragggen
Ref. 19

L@ =ay - 7, d@ - H(y). (44)

The equations of motion can be written in matrix form as
~ = . 45
-AD 0 571 0 (45)

ul= (AYF L 1) (46)

It is easy to see that

is the null-eigenvector of the matrix

f AW
F:(_Nl) 0)_ (47

Implying u* on both sides 0f45) and using(5) gives the new constraint

®@ ={®dD H}. (48)

Adding the term 4,®® to the Lagrangiarito perform consistengygives

L@ =ay - n®® - 7,0? —H(y). (49)

The equations of motion are

f AL AR y oH
-AY 0 0 |5 |=[o0 | (50)
-A@ 0 0 7 0

Assuming{®® ®®@}=0, one can find the new null-eigenvector,

w2 = (A@f71,0,1). (52)

Multiplying u? by (50) gives the new constrainb®={®? H}, and so on.

Suppose one wishes to proceed in this way to find the constraints of the chain discussed in the
preceding section, i.e., the second class cldg, ..., &N with the algebra given i138)—(40).
Suppose the above procedure has been proceeded up to tlidlA&2¢p1 where the equations of
motion are

/ .
f AL ... AlIN2)+] y oH
I n 0

(52)

~AN2+] g .0 NN2)+1 0
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Clearly no more null-eigenvector can be found. In fact adding the column and row corre-
sponding to the constraidtV2*1] has increased the rank of the matfby two. This means that
the equations of motion can be solved to fif2 and 71N2+1, There is no way in the context of
symplectic analysis to proceed further to find the remaining constr@ift& 1, ... ®MN of the
chain. This is really the failure of traditional symplectic analysis. In fact this is the reason why the
symplectic analysis has failed in the example given in Ref(dbtticle in hyperspheyeWe will
discuss this example in Sec. VI.

What we showed here is the failure of symplectic analysis for a second class system with only
one primary constrainti.e., a one chain systemHowever, one can easily observe that for an
arbitrary system with several primary constraints again the symplectic analysis would fail. The
reason is that for such a system some of the constraints driven atrgeiel, (I)if), may have
nonvanishing Poisson brackets with constraints of previous levels while commuting with primary
constraints. As we know from the Dirac approach, in such a case the Poisson brackets of these
constraints with Hamiltonian give the next level constraints. Meanwhile, a little care on symplectic
analysis shows that in this case a number of Lagrange multipliers corresponding to nonprimary
constraints would be determined and there is no way to find the next level constraints. In this way,
we conclude thathe symplectic analysis would fail whenever second class constraints emerge at
third level or higher

V. HOW TO SOLVE THE PROBLEM

In this section we try to find a way to maintain the symplectic analysis by imposing some
modifications. The origin of the problem is the fact thBtN2+1 has nonvanishing Poisson
brackets with®N2. As a result, the symplectic two-form on the left-hand side of @&@), i.e.,

f AL ... Al(N2)+1]
_ “A(l) o --- 0
F= . . . . y (53)
A2+ g ... 0
does not possess a new null-eigenvector. If one could consider the vector
u[(N/2)+1] = ('A[(N/2)+l]f—1'0’ ...,0,2 (54)

as a null-eigenvector, then by multiplying™2*1 on the right-hand side of52), one would
obtain the next constraint as

BLN2+2) = (lND+1] 11 (55

To reach this goal one should truncate those columnB which are located afteA™r). In
other words, instead d¥ in Eq. (53) one should consider the rectangular matrix

f AY
- ~AD 0
F= . . (56)
_AlN2+1 0

Clearly M2+l in Eq. (54) is the null-eigenvector oF. It is obvious that if one does the same
thing in the subsequent steps, one can produce all the remaining constraints of the chain, i.e.,
QN2+ - (N In the last step the chain terminates, sif@&y, D} 0.

But what is the justification to find the null-eigenvectorskofi.e., thetruncated F In fact
using Eq.(5) the set of equations
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foA® JH

— Z(l) 0 ‘ 0
: : ( 37/ ) l (57)
. 1

-AN 0 0

is equivalent to

vi=lyp,H+ @D i=1, ... K,

®=0, j=1,...N. (58)

Remembering thaty; has the same role as the Lagrange multiphgrcorresponding to the
primary constraintb”, we see that Eq58) is the correct equation of motion

yi ={yi.H (59

On the other hand, it is easy to see that the equations of motion resulting frotBZagan be
written as

yi =1{yi,Hel, (60)

whereHg contains all derived constrain{gcluding second class onesn fact as we explained
before, the correct equations of motion @6&) and not(60).

Therefore, if one wishes to proceed in the context of symplectic analysis, one should consider
Eq. (57) instead of Eq(52).

VI. EXAMPLE
Consider the Lagrangian
L=30"+v(g®- 1), (61)
whereq=(qy, ...,q,). The primary constraint i®,. The corresponding Hamiltonian is
H=3p"-v(@’- 1), (62)

wherep=(py, ...,py). In the usual Dirac approach, using the total Hamiltortigi= H+\P,, the
consistency ofbM=P, gives the following chain of constraints

oWV=p,,
P@=¢?-1,
®@=2q -p,

YW =2(p? + 2v0?). (63)

As is apparentp® and®® are conjugate t@¥ and®@, respectively. It is worth remembering

that although®® is second class, when reaching at third level, the process of consistency should
not stop, i.e., it should be proceeded one level more todiffiwhich is conjugate to the primary
constraint®, In the symplectic approach the corresponding first order Lagrangian is

L=pg+P,0 - 3p2+0v(g>—1) - \P,. (64)

This gives the singular presymplectic tensor
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F= (f O) (65)
“\o o/
wheref is the usual2n+2) X (2n+2) symplectic tensor,
f—()_1> (66)
“\1 o)

The equations of motion foy'=(q,v,p,P,,\) are fijyi=(9iHT where Hy=H+\P,. Clearly this
gives the canonical equation of motion with Hamiltontdq together with the constraint equation
P,=0. Adding the consistency termy;P, to the Lagrangiaii64), wheres;, is a new variable and
forgetting about the term proportional o (which just reproduces the primary constrainhe
finds

L@ =pg+Pyo - 7P, = 5p%+0v(9® - 1). (67)
This gives the equations of motion
FiYI = gH, (69)
whereY! =(q,v,p,P,, 7). In the matrix form we have
f AW
FO = (—"A“) 0 ) (69)

WhereND:(O,O,O,l). Here, bold zerq0) means a row vector with zero components. Clearly
u®=(0,-1,0,0,1) is the left null-eigenvector oFY. Multiplying the equations of motio68)
from the left byu™ gives the constrainb@=q2-1.

In the next level we have the Lagrangian

L® =L - P, - 7(0° - 1) (70)

written in the spac&’'=(q,v,p,P,, 71, 7,). The corresponding symplectic tensor reads

f AL AR
F@=| - AL 0 0 | 71)
-A® 0 o0

whereA@=(2q,0,0,0). Clearlyu®=(0,0,2q,0,0, 1 is the null-eigenvector of2. Multiplying
the equations of motiorIFi(jz)Yi:z?iHT from the left byu@ gives the next level constrairi®
=2q-p. Again considering another variabig, the third level Lagrangian would be

L®=L- 7P, - 72(0? ~ 1) = 75(29 - p). (72)
This gives the following symplectic tensor:
fOAD A@ A®
poo| AT 000 3
-A® 0 0 o0 [
-A® 0 0 0
where A®=(2p,0,29,0). Now the crucial point appears. That i&® has no new null-

eigenvector. In fact one expects that multiplying=(-2q,0,2p,0,0,0,2 by the equations of
motion due to.® gives the next constrair®=2(p?+2vq?). However, it can be easily checked
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that U®F® 0. Moreover,u® (with one additional zero as the last elemeist no more the
null-eigenvector oF®. This means that adding tf{&n+5)th row and columns t&? has led to
increasing the rank df® by two. In other words, the equations of motion fgy and 7 can be
solved. Unfortunately without any modification there is no way to find the Lagrangian,

LW =L = 7P, = 72(0” = 1) = 75(2q - p) = 7a(2(p? + 2007)). (74)
If we could findL®, then we would be able to have
fOAD A A® A
-A® 0 0 0 O
F@=| —a®@

0 0 0 , (75)
-A® 0 0 0
0 0 0

o O o

_A®

whereA®=(8vq,492,4p,0). If we had somehow derive(v4) and (75), then the singularity of
symplectic tensor would completely disappear and... 7, would be obtained. However, using
the truncated symplectic tensait the second step as

f AL
F@=|-A® 0 (76)
-A@ 0
and similarlyF® at the third level as
f AL
_ A o
@
S R (77)
-A® 0

makes it possible to introduce agaif? andu® as the corresponding left null-eigenvectors6?
andF®, respectively. This makes us able to fild" as explained before. It should be noted that
one can after all write the complete symplectic tens6t.

This example has also been discussed in Ref. 14, where some other reason is proposed as the
origin of failure of the symplectic analysis. The same results as what we derived here can be found
in every second class system possessing at least four levels of constraints. For example, one can
study the simpler Lagrangiab=xy—-z(x+y) as well as the more complicated example of the
bosonized Schwinger model {1 +1) dimension”8 given by

L= 30,006+ (g - )3, ¢A, — I, FH" 4 SAAE. (79)

One can see that the main feature of the above calculations will more or less appear in all such
examples.
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We construct static and time dependent exact soliton solutions for a theory of scalar
fields taking values on a wide class of two dimensional target spaces, and defined
on the four dimensional space—tir88x IR. The construction is based on an ansatz
built out of special coordinates d&. The requirement for finite energy introduce
boundary conditions that determine an infinite discrete spectrum of frequencies for
the oscillating solutions. For the case where the target space is the s$here
obtain static soliton solutions with nontrivial Hopf topological charges. In addition,
such Hopfions can oscillate in time, preserving their topological Hopf charge, with
any of the frequencies belonging to that infinite discrete spectrun20805
American Institute of Physic$DOI: 10.1063/1.1829971

I. INTRODUCTION

In this paper we consider a nonlinear theory of a complex scalar dietoh the space—time
S*X R. Our considerations apply to a wide class of target spaces, but the case of most interest is
that of the spheré&’, in which case the fieldi parametrizes a plane corresponding to the stereo-
graphic projection of?. The action is the integral of the square of the pull-back of the area form
on the target space. Therefore, it is quartic in derivatives, but only quadratic in time derivatives.
The theory is integrable in the sense that it possesses a generalized zero curvature representation
of its equations of motion and an infinite number of local conservation t&i’he conserved
currents are associated to the invariance of the theory under the area preserving diffeomorphisms
on the target space.

We construct an infinite number of static and time dependent exact soliton solutions using an
ansatz® that reduces the four dimensional nonlinear equations of motion into linear ordinary
differential equations for the profile function. In the case of the target sFatiee solitons carry
nontrivial Hopf topological charges. Although the topology is the same as that of other models
possessing Hopfion solutiofis, the Derrick’s scaling argument is circumvented in a different
manner. The stability of the static three dimensional solutions comes from the fact that the physi-
cal space iS® and that introduces a length scale given by its radius. A model in Euclidean space
where a similar stability mechanism occurs is discussed in Ref. 6.

The requirement for finite energy leads to boundary conditions that determine an infinite
discrete set of allowed frequencies for the oscillations of the solutions. Those solutions can be
linearly superposed since the profile function satisfies a linear equation. It turns out that the energy
of the superposed solution is the sum of the energies of the modes, and in this sense the modes are
decoupled. However, the profile function can take values only on some intervals on the real line,
which depend on the choice of the target space. Therefore, not all superpositions are allowed and
that introduces some sort of coupling among the modes. The allowed superpositions for the case
of the target spac& are discussed in detail. One of the most interesting superpositions corre-
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sponds to oscillating Hopfion solutions. We show that it is possible to superpose to the static
Hopfion soliton any number of oscillating modes with any of the frequencies belonging to that
infinite discrete spectrum. Although the solution oscillates in time, its topological Hopf charge is
preserved. The only constraint on such superposition appears on the intensity of each mode.

The paper is organized as follows: in Sec. Il we introduce the model and discuss its integra-
bility properties, in Sec. Il we propose the ansatz and construct the exact soliton solutions, in Sec.
IV we discuss the energy, boundary conditions and allowed frequencies. The case of the target
spaceS’ is discussed in Sec. V.

Il. THE MODEL
The metric on the space—tin® x R is given by
ds? = dt? - ré(

a21-2 +(1 —Z)d9012+2d9022). (1)

wheret is the time,z, and ¢;, i=1, 2, are coordinates on the sph&® and 0<z<1, 0< g
<2, andr, is the radius of the spher®. EmbeddingS® on R* we get that the Cartesian
coordinates of the points & are

X1=Tg\VZCOS¢p,y, Xg3=Ig\V1—2ZCOSqy,

X = ro\“"Z sin ©o, Xy = ro\““yl —-zsin Q1. (2)

The model is defined by the action

h2
5= f it Lsdi—y%”, 3

where the volume element @& is d2=(rg/2)dz de, dg,, and

h,, = d,ud,u’ = a,ud,u, (4)

where d, denotes partial derivatives with respect to the four coordinateS*onR, namely /*
=(t,2,¢1,9,), U is a complex scalar field, angi=y(|u|?), is a real functional of the squared
modulus ofu, and it defines the geometry of the target space. The metric on target space is given

by

du du’
L

Some cases of interest are the followirig) y=1 corresponding to the plane with coordinates
being the real and imaginary parts of (b) y=(1-|u??, with |u?><1, corresponding to the
Poincaré hyperbolic disc, and) y=(1+|u|?)? corresponding to the sphe®. In such casey is
related to the three dimensional unit vectofri?=1) defining the sphere, through the stereo-
graphic projection

do? = (5)

1 * - *
ﬁ:1+—|u|2(u+u,—|(u—u),|u|2—1). (6)
Notice that in the case of the target space b&hghe action(3) corresponds to the quartic term
of the Skyrme—Faddeev actibwhich has been studied on the space—tBh& R in Ref. 7.
The Euler—Lagrange equations following fra®) are given by
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%) .

together with its complex conjugate, and where
— — * 2 *
K, =h,,du=(dudu )d,u—-(u)d,u . (8)
The model(3) possesses an infinite number of local conserved currents given by

K, oG K oG
J =—&— _ —& (9)

oy au o yau’

whereG is a function ofu andu” but not of its derivatives. Using the equations of moti@nand
the identities

K,u=0, K, -K,#u=0 (10)

one can check that9) is indeed conserved, i.edJ,=0. The symmetries associated to such
conservation laws are the area preserving diffeomorphisms of the target manifold. Indeed, the
tensorh,,,/y is the pull-back of the area form on the target space

11

Therefore, the actioB) is invariant under diffeomorphisms preserving the gl and(9) are
the corresponding Noether curreffs.

Il. THE ANSATZ
Following Refs. 2 and 3 we introduce the ansatz
u = f(t,z)e (Mertmer) (12

wherem;, i=1, 2, are arbitrary integers, arfdis a real profile function. Replacing it into the
equation of motion7) one gets

af?\  4z(1- 3,f2
o7t<t—> _¥&Z(QZ_> =0, (13)
Y rofd Y
where
Q=miz+mi(1-2). (14)

We now make a change of variable in the profile function, introducing a fungtion

df?
dg~ —. (19
Y

For instance, in the particular cases discussed béf)wve get that(a) for the plane wherey
=1 one hagy=f?, andg=0; (b) for the Poincaré hyperbolic disk whene=(1-|u|?)?, one hagy
=1/(1-f?), andg=1; (c) for the spheres* where y=(1+|u|?)? one hasg=1/(1+f?), and O<g
<1.

So, with the chang€l5) one gets thaf13) becomes a linear partial differential equationgin

42(1 -2)
raQ

59~ 3(Qd,9)=0. (16)

The solutions can be obtained by separation of variables introducing
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9(t,2) =J(HH() 17)
and thenJ andH must satisfy
FI+ w?I=0 (19
and
r2002
72(1-2)4f(q?z+ (1 -2)dH] + 0T(qzz+ (1-2)H=0, (19

where w? is the separation of variables constant, and wigie

_Ini 20

Equation(19) is what is called a Heun equati8r1t is a generalization of Gauss hypergeo-
metric equation in the sense that it has one extra regular singular point. Ii@i@educes to the
hypergeometric equation fay=1. Notice that(19) is invariant under the joint transformations
g+« 1/q andz+ 1-z Therefore, ifH, ,(2) is a solution of(19) for some value ofj, so is

H1/q.0(2) = Hgu(1=2) (21)

for the inverse value Xf. One can obtain solutions ¢19) in powers series arourz=0 and for
0=qg=1. The solutions fog=1, are then obtained from those using the above symmetry. The
power series solutions are given by

1 o]
Hg(2 = —<Z+ > ann) , (22)

Vgo n=2
where the positive constantg ., are chosen such that the maximum absolute valugQf(2) in
the interval O<z=<1, is unity. The coefficients, fan=2, are determined by the recursion relation
(with ¢y=0, andc,=1)

-1 2,2 2,2
&= e 1)[(q2_ 1)(“’7“’ -(n- 2)2>Cn—2+ (wTro ~(n=1(n-2)+(’ - D(n- 1)2>cn-1]-

(23

We will be interested in solutions with real, and therefore the solutions(@®) are trigpnometric
functions. Of course, i§ is a solution of(16), so isag+ B, with @ and 8 constants. We will then
use the following normalization for the solutions @f):

Ugo = 3lSiN(wt+ OHy (2 +1], w#0 (24)

with Hg (2) given by (22). The advantage of such normalization is that the soluti@4s take
values on the real line from zero to unity only. Therefore, they are admissible solutions for the case
where the target space is the sph8tdsee discussion beloyd5)].

We normalize the static solutions @f6) as

In(g’z+1-2)

In o (25)

gq,O =
S0,9q,0 is @ monotonic function varying from zero z¢0 to unity atz=1. Notice thatg, ,— z as
g— 1. A decreasing function can be obtained by the interchagge- 1-g, .. Therefore(25) are
also admissible solutions for the case where the target space is the Sahere
The admissible solutions for the cases of the plane or the Poincaré hyperbolic disk can then be
written as
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TABLE |. The first three frequencies leading to soluti@@8) satisfying the
boundary condition§30) for some chosen values gf Due to the symmetry
(21) the frequencies are invariant under the interchaggel/q.

q wird/4 war3/4 wird/4

1 2 6 12

3/4 1.983 765266031  5.987 866 563 654  11.988 820 961 965
1/2 1913643550920 5.923 271548 463  11.930 495 946 441
1/4 1733644829967 5.672599570202 11.668 111 143 086
1/10 1517649738276 5.238029617258 11.066 608 078 277

gg!i)ne: agq,a)l gg’(;i)nc-diS& agq,m + 1 (26)

with « being a real and positive constant, apg, being given either by24) or (25) (see Tables
I—I11).
IV. THE ENERGY AND BOUNDARY CONDITIONS
The energy for the solutions obtained through the andaétrand(15) is given by
1 2
(39) 1
E=| d :16wzrfd9(—+—a 2], 27
LS S H=16n0| 20| 3+ 5(40) (27)

whereH is the Hamiltonian density associated(8). Using the equation of motiofl6) one gets
that the energy of static configurations is

1672 _
Estatic= p (Q90,9)| ;é- (28)
0

Therefore, the energy of the static solutid@$) is

(q-1/g)

In o? (29)

1672
E(gg0 = [mymy,|
fo
Notice that the solutions of19), for o+ 0, which do not vanish at=0 or z=1, have a
logarithmic divergence on its first derivative, at those points. We then observe2@rhat such
solutions do not have finite energy. Consequently, we shall impose the following boundary con-
ditions:

Hgo(0) =Hg (1) =0 for o+ 0. (30

In addition, using the equation of motigfh6) one obtains that

TABLE II. Numerical values Oqu!“’i' as defined in34), for some chosen
values ofg and for the three frequencies given in Table |. Dug2b), A,
is invariant under the interchange—1/q.

q Aq,wl Aq,a)z Aq,w3
1 4/3 2715 64/7
3/4 1.362 643 4.693 750 9.501 984
1/2 1.505 658 4.275 566 9.428 440
1/4 2.065 180 4.819 658 8.855 009

1/10 3.739 188 7.930 185 13.004 162
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TABLE Ill. Numerical values of the normalization constaft,,, as defined
in (22), for some chosen values gfand for the three frequencies given in
Table I. Due to(21), vg,, is invariant under the interchangge-1/q.

q vq,wl Uq,wz vq,w3

1 1/4 1/6\3 1/16

3/4 0.285 189 93 0.119 156 83 0.070 789 33

1/2 0.332 611 65 0.152 779 52 0.087 010 28

1/4 0.409 991 03 0.204 149 92 0.126 957 32

1/10 0.502 749 25 0.256 726 47 0.167 310 92
dE 3272 _
— = (Q495,9)|%5 - (31)
dt ro

Therefore, the energy is conserved for the static solutions, and for those sol@4pssitisfying
the boundary condition&30).
Multiplying (19) by H, , and integrating irg, one gets that

1 2 1
a)Q 1 1

dz——— Hj ——J dzQ (H! )?=—-= (QHg, H! )|ZL, 32
fo 42(1_2) q,w rg 0 ( q,w) rg( q,@ q,w)|Z:0 ( )

Consequently, the enerd®7) for the solutiong24) satisfying(30) is

1672
E(gq,w) = r |m1 m2|Aq,w ' (33)
0

where

Wiy (* ( qg 1 ) , 1 (! ( 1- z>
= =— —_—+ — =— + — ! 2_
Ago= Ao 16 Jo az 1-z qz Hao 4 fo dz|az q (Hq'w) (34

The fact that\ ,, is invariant under« 1/q, follows from the symmetry21). In Table Il we give
the values ofA, , for some chosen values gfand some allowed frequencies So, the energies
(29) and(33) do not depend upon the signs of the integagsandm, and it is invariant under the
interchangam, < m, [see(20)].

Multiplying (19) by H, ,, subtracting from the same relation withinterchanged withw, and
integrating inz, one gets that

1
— Q 1 ! ’ =
(8 gt g M9

!

Similarly, differentiating(19) with respect toz once, multiplying byH,, subtracting from the
same relation withw interchanged withw, and integrating irg, one gets that

1

—_ ! ! 1 ! ” 14 ! -

(w2 - wz)fo dZQHq,qu,w: r_z (4z(1 - Z)Q(Hq,qu,m - Hq,qu,w))|Zz;(1)' (36)
0

Consequently, for the solutiorig4) satisfying(30), and having finite first and secozeterivatives
at z=0 andz=1, one gets the orthogonality relations
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1 1
Q ’ r —
fo dZqu’w —— fo dZQHq'qu’w— 0 forw# w. (37)

It then follows that the energ§27) of a linear combination of solution®4) satisfying(30), is just
the sum of the energies of each solution, i.e.,
E(Agy., + BOqw) = A°E(Qq.) + B’E(Gqs) for  # . (39

Therefore, in that sense, the modes for the same valgewsd decoupled. However, the intensities
in which they enter in the superposition are not independent. As discussed dptine real
values that the profile functiog can take depend on the target space under consideration. So,
when we take linear combinations of the solutions we have to respect those constraints. In Sec V
we discuss those constrained linear combinations in detail in the case where the target space is the
sphereS’.

The boundary condition&30) lead to a discrete spectrum of allowed frequeneiesndeed,
for the case wherg=1 the serieg23) truncates whenever

2 2
r
%:n(n+1), n=1,2,3,.., (39

and the corresponding polynomials satisfy the boundary conditi@®s The first four of those
polynomials are given bjwith the normalization as i(22)]

Hi,=4(z-2),
Hye=6V3(z— 322+ 279,
Hy 1= 16(z- 62° + 102° - 57°),

2450z - 102° + 302° - 352* + 142°)
\7(3V5+5/6)V15 - 2/30

(40)

1,20~

where the first index refers [gp=1 and the second ta(n+1) as given by(39).

For g# 1 the serieg22) does not truncate, and the frequencigteading to solutions satis-
fying (30) can be found numerically. We give in Table | the first three frequencies for some chosen
values ofg. In addition, the same frequencies hold true under the exchargé/q due to the
symmetry (21). Therefore, the frequencies become smallegageparts from unity, either to
smaller or greater values than unity.

In Fig. 1 we exemplify the shape of the functidrg,,, by plotting the first three modéd;q,wi,
for g=3/4 andg=1/10 and thdrequenciesw;, i=1,2,3,given in Table I. Due to the symmetry
(21), Hyjq., can be obtained by reflecting the plots arow¥dl/2. Notice that the polynomial
solutions forg=1, given in(40), are invariant unde21). One observes that @asdecreases, the
functionsH, , get deformed in a way that their first derivativeszatl increase. Fog>1, it
follows, due to(21), that the first derivative oH, ,, at z=0 increases ag increases.

V. THE CASE OF S? AS TARGET SPACE

According to the comments belo@5), in the case where the target space is the two dimen-
sional spheres’, we have thaty=(1+|u[??, and sog=1/(1+f?) and O<g=<1. The ansat£12)

becomes
U= A /ﬂ g (Mertmyes) (41
g
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g=3/4
1
0.5
0
-0.5
-1
0 0.2 0.4 0.6 0.8 1
q=1/10
1
0.5
0
-0.5
-1
0 0.2 0.4 0.6 0.8 1

FIG. 1. Plots oqu,wi(z), i=1, 2, 3, as normalized i(22), for q=3/4 (top) and q=1/10 (bottom and for the three
frequencies given in Table I. The number of zeroes increase with the increaserbk plots ofH, , andH,, , are related
by reflection around=1/2 due to the ymmetry (21).

As we have discussed, the solutiq@d) and(25) are admissible solutions for the case where
the target space i§?. However, one can construct more admissible solutions, i.e., witly 0
=<1, by taking linear combinations of the solutiof}) and(25). An interesting case corresponds
to linear combinations of the static solutigp, given by(25), with one or more time dependent
solutions of the typ&24). It leads to oscillatingin time) Hopfion solutions. Let us consider the
caseqs=1 first. The static solutiorg,, vanishes atz=0, and hasz-derivative equals tdg?
-1)/In ¢? there. The functiorfy(2) =[(q?~1)/In 0?Jvq ,Hg,.(2), With Hg, given by (23) and sat-
isfying (30), has the same behaviorat0 asg, . In addition,c; given by(23), is negative for the
case ofH,, satifying (30), and sof,(z) grows slower tharg,, for small z. We do not have
rigorous proof, but by careful direct inspection we found thatz im&reases from zero to unity the
absolute value of(z) never exceeds the value gf o, which is a positive monotonic function of
z. It then follows that the combination

(*-1) _
Gqo+ a‘i'r]?quw sin(wt + &)Hqo(2) (42)

with 0= o<1, takes values between zero and unity only, and so it is an admissible time dependent
solution for the target spac®. Therefore, by adding up such types of solutions and dividing by
their number, one gets that the time dependent solutions
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In(g’z+1-2) L1 1(g*-
In g? N Ing?

gy’ (t.2) = Vs Vg0, SiNwit + 8)Hg., (2), (43)

@j

whereN is the number of modedrequenciesentering into the sum, angl’s are real coefficients
satisfying O< ;< 1, are admissible solutions for the target sp&téhe energy of such solutions,
according to(24), (25), (29), (33), and(38), is given by

167 (9-1/9) 9 (q )< 5.
E= o Imymy| e 1+45 = 2 afvs o, Mg (44)

with Aq given by (34).
Solutlons of the typ€43) for =1 can be obtained using the symme(gt), i.e., g )(t 2)

(t 1- z) Solutions that decrease from unity 20 to zero atz=1 can be obtalned by the
symmetrygq )(t 2)—1- g(N)(t z). The energy44) is invariant under those two types of transfor-
mations. As we now show all these solutions correspond to oscillating Hopfions, i.e., solutions
that oscillate in time and have a consténttime) nontrivial Hopf humber.

For any fixed time our solutions define a map from the physical sp&te the target space
&, and so it is a Hopf ma}’ We now show that the Hopf invariarithe linking numbey is
independent of time for the admissible solutions we have constructed. In order to calculate the
Hopf index of the solution we introduce

— ~ _
®,=Vgcodmypy), P3=\1-gcosme,),

O, =~ \“‘E sin(myey), ®,=\1-gsin(myey), (45)

which defines another 3-sphegg, since®3+d3+®3+d3=1. The fieldu in (41) can be written
as

_Dy+idy,

- , 46
D, +id, (49

Sinceu parametrizes the sphe& through the stereographic projectio), we have tha(46)
gives the mags;, — S So, the Hopf index is in fact evaluated through the rBp> S} — S, as
we now explain. We introduce the potential

A- 'E(zﬁz -vZz'2), (47)

where

z
z:(zl>, Z,=dy+id,, Z,=d,+id, (49)
2

and the differential operatcf‘ is the gradient on the physical spas® The Hopf index is defined
by the integreill0

1 - -
=— | d3 A-curlA, 49
QH 4772f E u ( )
where & is the volume element on the physical sp&eEvaluating we get

- 1-0). R
A=- ml( ﬁed +Mmy——= gre (50
Vi-z \zZ

and
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curlA= 20,9(— mpV1l - 28, + ml\Eéﬂ). (51

Consequently we get that

QH = mlmZ[g(t!Z: 1) - g(tvz: O)] (52)
Therefore, the solution®5) have Hopf index
Qn(gq0) = Mm, (53

and so they are static Hopfion soliton solution. The time dependent sol¢Bdnare constant at
z=0 andz=1 due to the boundary conditiai30), i.e., gq,(t,0)=0q(t,1)=1/2. Therefore, they
carry no Hopf number

Qu(9qw) =0, w#0. (54)

The solutiong43) although time dependent, also have contant values @tandz=1, determined
by their static component. It then follows that

QH(g((:]N)) =mm, (55)

and so they do correspond to oscillating Hopfion soliton solutions.

The Hopf index can also be calculated as the linking number of the preimages of two points
of 2.9 Notice, from(6), that the north pole of?, i=(0,0,1), corresponds to— o, and so from
(41) to g=0. On the other hand, the south polefi=(0,0,-1), corresponds ta=0, and so to
g=1. Therefore, from45) and (48), we see that the pre-image ﬁ) of the north pole ofs?
correponds toZ;=€™¢1 and Z,=0, while the preimage of the south pole Iy=0 and Z,
=g M2¢2, For the static solutioi25) and the time dependent solutiof#3), the preimages in the
spacialS® of these two circles ir§;, are constant in time. In addition, those two circlesSinpass
through each othan,m, times asp; and ¢, varies from 0 to 2r in S°. So their linking number is
m;my,, and that is the Hopf index. For the time dependent soluti@dsit is not possible to have
g=0 andg=1 on different points on the spatiaf at the same timé Therefore, the preimages of
the north and south poles & never link, and so the Hopf index of such solutions vanishes.
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We analyze the canonical treatment of classical constrained mechanical systems
formulated with a discrete time. We prove that under very general conditions, it is
possible to introduce nonsingular canonical transformations that preserve the con-
straint surface and the Poisson or Dirac bracket structure. The conditions for the
preservation of the constraints are more stringent than in the continuous case and as
a consequence some of the continuum constraints become second class upon dis-
cretization and need to be solved by fixing their associated Lagrange multipliers.
The gauge invariance of the discrete theory is encoded in a set of arbitrary func-
tions that appear in the generating function of the evolution equations. The result-
ing scheme is general enough to accommodate the treatment of field theories on the
lattice. This paper attempts to clarify and put on sounder footing a discretization
technique that has already been used to treat a variety of systems, including Yang—
Mills theories, BF theory, and general relativity on the lattice2@5 American
Institute of Physics[DOI: 10.1063/1.1823030

I. INTRODUCTION

We have recently introducéd a technique for treating the theories that arise when one
discretizegspacg-time in a constrained mechanical system or a continuum field theory. We have
shown that this technique works for Yang—Mills and BF theories and implemented it for the
gravitational case. Previous attempts to studying systems with discrete time had concentrated
mostly on systems without constraints or with holonomic constraints @atya review with a
comprehensive reference list see Ref. 3

The idea consists on starting from a discretized action, constructing discrete Lagrange equa-
tions and introducing a symplectic structure in the discrete space. The evolution is implemented
via canonical transformations and the consistency of the discrete theory determines in part the
Lagrange multipliers. In some totally constrained systems, like general relativity, the resulting
discrete theories are constraint-free since the constraints are solved for the Lagrange multipliers.
This makes the quantization of the discrete theories considerably simpler than the continuum
cases. This was exploited to make progress in solving the problem of time in quantum“g'iravity
and to implement the Page—Wootters relational tifrend show that a fundamental decoherence
arises in quantum mechanics from quantum gravity.

In this paper, we want to address in a more systematic way the issue of the canonical formu-
lation of discrete constrained systems. Up to now, most of the analysis has been made on specific
examples, and a canonical analysis, a la Diris; still lacking. In particular, the technique relied

0022-2488/2005/46(1)/012901/14/$22.50 46, 012901-1 © 2005 American Institute of Physics
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heavily on defining a canonical transformation that was initially sing@ad therefore not a true
canonical transformatigrand showing that one could eliminate variables and end up with a true
canonical transformation. Up to now this was shown in a case by case basis. This paper determines
the general conditions needed for the construction of a proper canonical transformation by fol-
lowing a close analogue of the Dirac procedure, adapted to the discrete case. In particular, we note
that there are several ways to proceed that yield equivalent results, but that may offer different
advantages for particular systems.

In Sec. Il we will lay out the framework of how to deal with mechanical systems where time
is discrete, including singular and nonsingular systems. In Sec. Il we will develop a classification
of constraints into first and second class suitable for the discrete context. In Sec. IV we work out
a specific example that exhibits the details of the formalism. In Sec. V we discuss an alternative
formulation of the formalism and we end with conclusions and discussion.

Il. MECHANICS WITH DISCRETE TIME

We start by considering a continuum theory representing a mechanical system. Its Lagrangian

will be denoted byL(g?,¢?), a=1,... M. This setting is general enough to accommodate, for
instance, totally constrained systems. In such agseill be the derivative of the canonical
variables with respect to the evolution parameter. It is also general enough to include the systems
that result from formulating on a discrete space—time lattice a continuum field theory.

We discretize the evolution parameter in interv@sssibly varying upon evolutiort, ,;—t,
=¢, and we label the generalized coordinates evaluatet] as q,. We define the discretized
Lagrangian as

L(n,n+1) = L(gd o) = el (@D, (1)
where
a _ ~a
qa: qﬁ and an qn+1 qn. (2)
€n

Of course, one could have chosen to discretize things in a different fashion, for instance using
a different approximation for the derivative, or by choosing to write the continuum Lagrangian in
terms of different variables. The resulting discrete theories generically will be different and will
approximate the continuum theory in different ways. However, given a discrete theory, the treat-
ment we outline in this paper is unique. For instance, in the method we introduce in order for
constraints to be preserved we will fix the values of the Lagrange multipliers. However, if one has
constraints that are only function of either the configuration or the momentum var{ablesot
mixed) the method preserves the constraints automatically. Therefore the determination of the
Lagrange multipliers will depend on the particular form chosen for the continuum theory. If one
can find a canonical transformation that makes all the constraints only dependent on configuration
variables, for example, then the Lagrange multipliers will not be determined and the symmetries
implemented by the constraints will be preserved automatically without the need to determine the
Lagrange multipliers.

The action can then be written as

N

S=> L(nn+1). (3)
n=0

It should be noted that in previous treatménitae have written the Lagrangian in first order
form, i.e.,L=[dt(pg—H(p,q)). It should be emphasized that this is contained as a particular case
in the treatment we are presenting in this paper. In this case one takeslaott p to be
configuration variables, and one is faced with a Lagrangian that invalyep,, and q,;; as
variables, being independentpf, . In Sec. IV we discuss an example where in fact we apply the
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technique to a Lagrangian of this type. Although in simple examples as these the first order form
may appear as a bit of an overkill, since dynamical variables and constraints proliferate, it never-
theless shows that the method is applicable as outlined without problems.

If the continuum theory is invariant under reparametrizations of the evolution parameter, one
can show that the information about the intervgJsnay be absorbed in the Lagrange multipliers.
In the case of standard mechanical systems it is simpler to use an invariant irigreal

The Lagrange equations of motion are obtained by requiring the action to be stationary under
variations of the configuration variableg fixed at the endpoints of the evolution intervat0,
n=N+1,

JdL(n,n+1) N dL(n-1,n) _
Igh Iqh
These equations define a unique evolution if the determinant is

0. (4)

PL(n,n+1)
d qg+1 aqn

We will refer to this case as the nonsingular case. When the determinant vanishes, one must
analyze the situation differently. Let us start with the nonsingular case.

#0. ©)

A. Nonsingular case

In this case one can solve the Lagrange equations explicitly argj,thare uniquely given as
a function ofq, and q,-;. This is the equivalent of the Hessian condition for the nonsingular
Lagrangian theories in the continuum. The resulting equations are “second order” in the sense that
the g,’'s are determined provided one knows two previous time levels. One can introduce a “first
order” formulation by introducing canonically conjugate variables as is usually done when intro-
ducing a Hamiltonian formulation in the continuum theories.

We introduce the following definition of variables that we will later show end up being
canonically conjugate momenta of the configuration variables:

. _ dL(nn+1)
_ oennr 6
n+1 aqﬁ+1 ( )
dL(n=1,n) dL(n,n+1)
ﬁE = - (7)

a o a

where we have used E@4). Equations(6) and (7) define a canonical transformation for the
variablesq,, p, t0 0.1, Pre1 With the type 1 generating functiof, =-L(g3,q5+1) provided that
condition (5) is fulfilled. Notice that the evolution scheme is implicit, one can use the bottom
equation(since we are in the nonsingular case give an expression fay,., in terms ofqg,, p,,
which in turn can be substituted in the top equation to get an equatigfppurely in terms of

On Pn-

It should be noted that there are several other possible choices, when going from the set of
equationg6) and(7) to an explicit evolution scheme. For example, one can choose to do things in
a way that yields a closer analogy with the standard Hamiltonian description in the continuum by
introducing type 2 canonical transformations. To do this, we choose to invert6iEdor o,
=q?,,(q0, p2,,), which is possible only if

PL(n,n+1)
Iy I G
We can now introduce a Legendre transform and define

+#0. (8)
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Fz(Qna pn+1) = E qg+1pﬁ+1 - L(qnaQn+1)- (9)
a

From here it is immediate to obtain

JF
b _ 2

=22z 10
n+1 apg+1 ( )
dF, —dL(n,n+1)

b~ b
J 0y d0n
where we have used the Lagrange equation in order to obtain the last equality. We easily recognize
from here that~, behaves as a type 2 generating function of the canonical transformation con-
necting leveln with level n+1.
We may define now a sort of “type 2” Hamiltonigim the sense that it depends pg.; and

Ons Ha(Pn+1,00)] given by

Ho(Cn Prvt) = 2 Poet(@rq = G2 = LGy Gned) = Fol i, Prv) = 2 Poerdl, (12
a a

which leads to the discrete Hamilton equations,

JH
b=+ —2 13
qn+1 qn &p2+1! ( )
dH>
pg=pg+1+ aqg (14)

It should be noted that although this formulation has a degree of analogy with the traditional
Hamiltonian formulation, there are significant differences due to the fact that the conjugate vari-
ables live at different time slices. It would not be possible therefore to use this formulation to
attempt to construct a Schrodinger equation starting from the above Hamiltonian.

Provided that the canonical map definedMyis invertible we end up with a discrete evolu-
tion implemented by a canonical transformation. It can be easily seen by using the Legendre
transform that=, will be invertible if and only if

-1
# 0. (15

‘ PFy(n,n+ 1) #L(n,n+1) ‘ #L(n,n+1)
I RPri e i) I QBos10ne

Thus, in order to have canonical transformations generated by type 2 functions, the Hessian
condition in the continuum time mechanics leads to two independent conditions in the discrete
theory given by Egs(5) and (8). Notice however that8) is not necessary for introducing a
symplectic structure.

It is clear that when one builds a canonical discrete theory there are four possibilities depend-
ing on which pair of variables one chooses to construct the generating functional of the canonical
transformation, eitheq,,,dn+1: dns Pntts PnsGntts PrsPrea- 1N this section we considered only two,
but the others can be easily generalized from the discussion here.

B. The singular case

Let us consider as before the generic discrete Lagrangiann+1)=L(qg3,q3,,) with a

=1,... M. It leads to the equations we already discussed,
a _dL(nn+1)

n+l~— a
d qn+l

(16)
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a —

n

_ L(n,n+1)
agy
If |&2L(n,n+1)/aqﬁ+lﬁq2| vanishes and its rank iK, the system is singular and h&s-K
constraints of the form

17

DA, pp) =0 (18)
that result from Eq(17), andM —K constraints,
U A(Gfe1,Pre) =0, (19

resulting from Eq(16). The evolution of the configuration variables from leweto n+1 is given
by solving for gf,, the equation(17). As the system is singular the evolution depends(lin
-K) arbitrary functionsv?,

F, = PR, PO, V). (20)

We shall follow closely the standard Dirac canonical procedure of continuum mechanics. In
this case, the analysis of a constraint system goes through two steps. The first step consists in the
definition of a set of evolution equations that weakly preserve the constraints and the Poisson
symplectic structure. To do that one defines the total HamiltoRigaHy+V“¢,, where ¢, are
the primary constraints, and th¢ are partially determined in order to preserve all the constraints
of the system. Even though some of ¥ie may be arbitrary functions, once they are specified, the
evolution generated bl preserves the Poisson brackets and the dynamical evolution is consis-
tent at the classical level with the constraint structure. The second step is only required to quantize
the system and consists in the identification of the first and second class constraints and the
introduction of the Dirac brackets that enforce strongly the second class constraints.

As we shall see, the same procedure may be followed in the discrete case. The main difference
is the implementation of the canonical transformation that is not generated by a Hamiltonian but
by a canonical transformation of types 2, 3, or 4.

Let us start by completing the evolution equations. We need to add @&can equation for

Pn+1,
9 L(0n, O+ 1)
e o (21)
Qn+1 qﬁ+l:fa(qn’pn‘vﬁ‘)
We now impose the preservation of the constraints
dL(q,, 3
(DA(QﬁﬁL' pﬂ+1) = ¢A<fan' : )= 0. (22)
n+1

Furthermore, we need to impose tiel level constraints at level, W(qf, p5) =0 and impose the
consistency conditions

\IfA(fan,m) =0. (23)

9 Q1
Three different cases may occur.

(@) Equations(22) and (23) vanish automatically, and therefore we are not led to new condi-
tions.

(b) They lead to inconsistencies, and the dynamical system is inconsistent.

(c) New secondary constrain®(q, p) appear or/and some of the arbitrary functidﬂ%are
determined, that i¥>=VA(q?,p?,v%) with =1, ... R<(N-K), andv? arbitrary functions.
The process is repeated until consistency is achieved. That is, until the consistency condi-
tions are automatically satisfied without further constraints and conditiong. for
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Substitutingvﬁ in (20) and (21) we get the evolution equations that preserve all the con-
straints: primary, secondary, tertiary, and so on,

o1 = F3(qB,pB, VA(G, p.v)) = (G, b0, (24)
Phe1 = 9o PR v ). (25)
Initial values need to be restricted by the O level constraints,

D05, pd) = Pa(gd,py) = 0. (26)

In order to have a complete analogy with the continuum case, we still need to analyze under
what conditions this evolution also preserves the Poisson bracket structure. As in the continuum
case we assume that the arbitrary functionsave been fixed. Three different cases may arise
depending on if one chooses to implement things in terms of a canonical transformation of types
2,3o0r4.

Case |:Equation(24) is invertible forg?, that is,|dq3, ,/ aqﬁ| # 0 and therefore one can write

92 = h?(a, 1, pD). (27)

Notice that, under these hypotheses, there are no pseudoconstraints of th&(&jrmps)
=0. We call these pseudoconstraints because they involve variables at different instants of time.
We may define a type 3 generating function of canonical transformations,

F3(qg+lvpg) = [pﬁqg + L(anqn+1)]|qg=hb- (28)

Then we have

9 F3(0h1,PR)

PO dh = (6,1, P5) (29
and
aF a+ , a &L a' a+
3(er10 1 pn) — (anqn 1) — p2+1- (30)
d On+1 J On+1 g,=h

Notice that in the last equality there are also contributions coming from the dependence on
gn+1 Of the leveln variablesq,, but these contributions cancel because of the definition of the
canonical momenta. The information about the momenta is completely encoded in the evolution
equationsg?,;=h? and the constraints. As the first equation is equivalen2#) one ends up
recovering the fundamental evolution equations as a canonical transformation gener&gd by
Furthermore,

b
d F3(Qﬁ+l, pﬁ) d qn
b
9 Pn 9 Ghey 9 Ghey
due to the fact that we have assumed tigg,,/ g% # 0, and consequentlf; is a nonsingular
generating function and therefore the resulting canonical transformation preserves the Poisson

bracket structure.
Case lI: Equation(25) is invertible forpd, that is|dpg,,/ apﬁ| # 0 and therefore one can write

#0 (31

P2 =g?(al, pl.y)- (32

Notice that, under these hypotheses, there are no pseudoconstraints of th@&(&drpf.,)
=0. By substituting32) in (24), one gets
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Gt = KA(da Phe) (33
which allows one to introduce a type 2 generating function,

Fa(ah Pred) = [Phestines = L (G Onen) Tlop, - (34)

One can now easily check that this generating function reproduces the evolution equations
(24) and(25) and defines a nonsingular canonical transformation that preserves the Poisson brack-
ets in the evolution.

Case lll: Even when the system has pseudoconstraints of the &fqgf,,,p3)=0 and
F(gd,pd,,)=0 one may be able to find a canonical transformation provided that the system does
not have pseudoconstraints of the foFtp, p&,,) =0.

In fact, by using Eq(25) one can invert for

ah = 1%(pp, Pher) (35)
and substituting in24) get

One1 = ma(pg’ pﬁ+1)- (36)

A generating function of type 4 that does the same job as the two previous ones may now be
introduced,

b _ b
Fa(PhPRun) = [ PheaGhen * PROR + Ll Cos) G- (37

All of the discrete systems that have been treated up to now in the literature may be analyzed by
following this canonical procedure, allowing one to preserve the constraints and the Poisson
bracket structure. Later on we will show an example of a system of this type in order to analyze

how this procedure works in a concrete case.

It should be noted that there may exist mechanical systems that do not fall into any of the
above classifications. For instance, a system could have pseudoconstraints of all the types listed
above. In such cases one will need to develop further techniques to treat them. For instance one
could introduce canonical transformations of a given type for some of the variables and of a
different type for other variables. This would require further study and it does not appear neces-
sary for the systems that have been analyzed up to present.

Ill. CLASSIFICATION OF THE CONSTRAINTS

At this point we have a set of constraints primary, secondary, tertiary, etc., of the form
xz(g?,p? =0 with Z=1, ... A with A the total number of independent constraints, that are pre-
served under the evolution given by Eq24) and (25) provided part or all of the arbitrary
functionsV are conveniently fixed.

As in the continuum case it is convenient to introduce the notion of first and second class
constraints, in order to quantize the theory. A constraint is of first class if it commutes with all the
constraints, if that is not the case it is of second class. As in the continuum case one can define first
class functions of the canonical variablég],p) that are not necessarily constraints. Such a
function will be first class if it commutes with all the constraints. Second class constraints may be
imposed strongly by introducing Dirac brackets. As the evolution equations preserve the Poisson
structure, they will preserve the Dirac structure because Dirac brackets are defined in terms of
Poisson brackets. One ends up with a theory with a set of evolution equations that preserve the
symplectic structure of the system, and therefore may be quantized by describing the evolution in
terms of unitary operators.

In the discrete case there is not a straightforward relation between the number of first and
second class constraints and the number of phase space degrees of freedom. This is due to the fact
that now the evolution of the constraints is not directly related with their Poisson brackets with a
total Hamiltonian. Thus, the fact that a constraint does not commute with others is not easily
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related with the determination of an arbitrary function. It is still very easy to determine the number

of phase space degrees of freedom. In fact this number is given by two times the number of
configuration variables minus the total number of constraints minus the number of arbitrary func-
tionsv.

IV. AN EXAMPLE OF CONSTRAINED SYSTEM WITH SECOND CLASS CONSTRAINTS

To illustrate the techniques elaborated above, we would like to discuss a model that is simple,
yet addresses in a nontrivial way the main points we discussed. This example had been treated
using ad-hoc techniques in Ref. 4. The model consists of a parametrized free particle in a two-
dimensional space—time under the influence of a linear potential. The discrete Lagrangian is given

by

Ln = L(qﬁ! Wﬁy Nn!qﬁ+11 7Tﬁ+1! Nn+1) = Wﬁ(Qﬁﬂ - qﬁ) - Nn[ﬂ'g + %(71.%)2 + a’qu1] . (38)

We have chosen a first order formulation for the particle. However, this Lagrangian is of the type
we considered in this paper, one simply needs to consider all variaples’,N as configuration
variables. The system is clearly singular since #i& and N only appear at leveh (or in the
continuum Lagrangian, their time derivatives are absélihen considered as a type | generating
function, the above Lagrangian leads to the equations

JL
p?-r,n+1 = an =0, (39
4 T+l
JL
pg,n+1 = (9q—an = Wﬁ* (40)
n+1
L,
== O, 41
Pn,n+1 INo (41)
and
a 4 Ln — a a 1 66 5a
p-n-,n - P - (qn+1 - qn) + 7TnNn 1t Nn 01 (42)
n
JL
pg,n == z9q2 = Wﬁ+ 5?C¥Nn, (43
n
JL 1
Pun= =~ = Mt (M) + agy. (44)
n

One can easily recognize that the system has six constraints: threenattHevel, and three
at then level. They are

’ﬂ? = p?r,n+1 = O* (45)
= Pnne1=0, (46)

O = pg,— (mh+ &aNy), (47
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Dy = pyp—[mo+ 5(70)2 + agh]. (49)

Therefore the evolution depends on three arbitrary functiggs V5 |,

Q1 = O+ TN &5+ N — P2, (49)
wﬁﬂ = Wﬁ + anm, (50)
Nn+1=Np+ Vyn. (51

The preservation of thes constraints from levenh to leveln+1 is automatically ensured from
(23). Now we impose the preservation of tlheconstraints upon evolution. Let us begin \Mﬂ@

q)(1)n+l = pg,n+1 - 77'2+1 = pg,n - 772 - Vo,n =0, (52)

T,

which taking into account the constraid,, implies V2 =0.
For the®, one gets the equation

Dyney = 70+ algh + Ny + (mh + V)2 =0, (53

that taking into account the constrait,, implies that

————
Vi =—mm+ el(mh)? - 2mNya, (54)
wheree==+1.
Finally we have
1 .l 1_\A _
Dpne1 = Pgn~ Nna =7, = Vo, — a(Np+Vy,) =0, (55

that after imposing the constraint at leveleads to

1
Vo= - ;Vi,n = Np,. (56)

Thus, the evolution equations for the configuration variables are

qﬁ+1 = qg + 77'%ansell + Nné%v (57

772+1 = 772’ (58)
—

W%Jrl = EV’(W#)Z - ZWﬁNna, (59)

1 T
Nps1 = ;[77% - €\ (77%)2 - ZW%Nna]. (60)

We are now ready to define an invertible canonical transformation with the help of a type 3
generating function. Notice that these evolution equations are invertiblg) fand therefore we
are in the case I. The inverse is given by a set of equations of thedgloR,,), explicitly given
by

o
G = Gner = TnetNoes = 5 (Nnw)?, (61)
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o
7Tﬁ+1Nn+l + E(Nnﬂ)z
G =0~ — : (62)

a1t &Npey

172 = 772+1, (63)

77% = 7Tr11+1 + aNpyq, (64)

o
77'%+1Nn+1 + E(Nn+1)2

" 71'r:§+1 +aNpyg

Recalling thatF; is given by Eq.(28) we obtain

1
—~0 0 1 1 0o 0 2812 1 1 \2
Fs= PrnTher T pn-,n(aNn+1 + o) + Pg,nfn+1 ENn+1[a N1+ 3aNp 17, + 2(14) ]

Nps1(aNpyq + 27Tﬁ+1) 0

1 n-
2(aNpsg + ) 4

1 a
Pnnt 5(77;1)2 + aq%ﬂ] + pé,n<qr:k+1 - EN§+1 - Nn+177rj;+l> :

(66)

One can check that Eq&1)—<65) are easily recovered by taking the partial derivative with
respect top?. By differentiating with respect tg?,,; one gets

pg,n+1 = pg,nl (67)
1 _.1 _« 1
pq,n+1 - pq,n 2AnNn+1(a’Nn+1 + 2'77-n+1)! (68)
p?r,n+1 = p?r,n! (69)
1 ) Nﬂ+l 1 1 1 1
Prne1=Prnt 2 [3aNn+1 - 2pq,n + 47Tn+1 +2BpA, - An(’”'n+1 + BnAn)(ale + 27Tn+1)]y
(70
Pnn+1= gazNﬁﬂ + apqlr,n - pcl4,n77%+1 + (77#1)2 +B,
+ a'Nn+1[_ pé,n + 317'r:li+1 - %BnAﬁ(ale + 277r]{+1):|, (71)
where we have introduced
A= (aNpyp + ) 7 (72
B, = Pnn— pgn - %(77%+1)2 - a’qr11+1- (73)

By substituting in Eqs(67)—«71) the variablesy,,; and using the levah constraints one gets
Eqgs.(39—41), which is a canonical transformation that reproduces, on the constraint surface, the
evolution equations of the discrete particle.

What remains to be done is to identify the second class constraints and impose them strongly.
The complete set of six constraints of this mogednd® are second class and allow one to solve
for ## andN and eliminate completely these variables and their complex conjugatasd Py
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One can proceed in two different ways. The first alternative is to start by observing that
and Py vanish strongly, and then to solve ferandN in terms of then+1 level variables, leading
to

7= P (74)
77# = pé,n+1! (75)
C
Ny = — 3, (76)
aPq n+1

whereC,;1= Dg,mﬁ(pé,n+1)2/2+at1$+1- The relevant evolution equations are obtained f(&™,
(67), and(68), and are given by

C
Oher =G0+ Ny =g+ — 77, (77
a'pq,n+l
1 _ 1 1_ 1 Cn+1
One1 = O+ Npm = 0Qp + 7' (78)
Pan = Pan+t: (79)
1 _ A1 — Cn+1
Pgn=Pgn+1t aN, = Pgnerat 1 (80)
g.n+1

and we recover the evolution equations obtained in Ref. 4.
The second alternative consists in solving ferand N in terms of then level variables,
leading to

7= Pon, (81)
o
7= e\=2(pg,+ agp), (82)
1 —_—
N, = ;(pé,n - e\=2(py,+ aqy), (83)

and from here, computing the evolution equations by ughTy, (67), and(68). The two methods

yield evolution schemes of different functional form since one propagates “forward” in time and
the other “backward.” The inequivalence in the functional form stems from the fact that the
discretization of the time derivatives chosen in the Lagrangian is not centered. It should be
emphasized that if one starts from given initial data and propagates forward with the first system
of equations and then backward using the second, one will return to the same initial data.

Notice that we have six second class constraints, and the initial number of phase space degrees
of freedom was 10. By noticing that there are no arbitrary functions left, one is left with four
degrees of freedom on the constraint surface. The continuum model had two degrees of freedom.

The procedure we have followed here is completely general and may be simplified when one
is treating specific cases. For instance, as it happens in the continuumstheierysometimes
possible to implement the canonical analysis by first solving the constraints for the unphysical
degrees of freedonN,r,pN,p™ and then introducing a generating functional on the physical
degrees of freedom by following the procedure of the preceding sections. In this particular case it

is easy to show that, fopd #0, |3,/ dq°| # 0, where 2= (gt,q%), and thus it is possible to
y op On+1/ 90 q a-.q p



012901-12  Di Bartolo et al. J. Math. Phys. 46, 012901 (2005)

construct anF; generating functional. In all the models treated up to now in the literature the
unphysical degrees of freedom were eliminated before obtaining the canonical transformation for
the evolution of the physical degrees of freedom. In order to keep the analysis general in a simple
model, here we have kept all the variables involved in this approach.

V. TREATMENT IN TERMS OF TYPE Il GENERATING FUNCTIONS

Up to now, we have taken as the starting point a singular type | generating function given by
F1=-L(d3,095,,). It is interesting to analyze how singular systems may be described in terms of
other types of generating functions.

Let us assume that neither conditi(8) nor condition(5) are fulfilled by the discrete system
and, therefore, we are in the singular case. Then, it may be immediately seen, byl@sjragnd
taking into account that the determinant that appear@jmow vanishes, that singular systems
with first order Lagrangians in the continuum lead to the presence of pseudoconstraints
?.(0n, Prs1) =0, in the theory. Recall that these pseudoconstraints are similar to the constraints that
arise in the continuum case, but mixing configuration variables at one level with momenta in the
next level. As in the continuum case, one can then introduce the pseudoconstraint §yrface
which we shall assume has well-defined functions,

§¢a=(““i£.“,“.;ﬂén“), (84)

where a vectof in the tangent space &, T(qpSy is such that

7-V,=00 . (85)

Let us introduce now as before the type 2 Hamiltoniap),
H,= 2 pg+1(qﬁ+1 - qﬁ) - L(qnaQn+1)- (86)
a

It is easy to see, using the pseudoconstraints, tha{&&).is a function ofq,,p,:1- Let us
consider now an infinitesimal variation &f, along the pseudoconstraint surface,

oL oL
dH, =2 {(qﬁﬂ - o)dph, + <p§+1 - )dqﬁ+1 - (pﬁ+1 + —a)dqﬁ}
a aQn+1 aQn

aL

=2 {(qﬁﬂ —gn)dpf.. - (pﬁ+1 + —E,\)dqﬁ} : (87)
a d0q

where in the last step we uséd). H, is well defined inS,, but can be extended to the whole phase

space as it is done in the case of constraints in the continuum theory. In order to obtain the

canonical equation of motion we start from the identity,

aH, aH,
adan+ ——
ﬁqn &pn+1

dH5(Gn, Prs) = 2 ( dpgﬂ) ) (88)

and evaluating it for an infinitesimal displacemedg, dp) in Ty ;S we can usg87) and the
Lagrangian equations of motidi@) to obtain

JH JH
S | (oha- e 222 o {01+ 22 <o 9
a n n+

Since(dq, dp) is an arbitrary tangent vector ), following (85) we obtain that the coeffi-
cient must be proportional to the gradient. Introducing therefore the Lagrange mult\liasshe
proportionality factors, we will end with the set of equations,
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H Jd¢
a — a4 2 N a , 90
R T 90
_ dH, xo»
pﬁ+1_ ﬁ_ aqg_ naqﬁ' (91
®a(0n,Pns1) = 0. (92

This system is similar to the continuum set of equations with the inclusion of pseudocon-
straints, which have the same functional form as the continuum constraints, but involve configu-
ration variables at levei and momenta at level+ 1, instead of level variables. From this initial
evolution equations one may follow a procedure similar to the one developed in the preceding
section in order to study the consistency of themary) constraints and pseudoconstraints.

VI. DISCUSSION AND CONCLUSIONS

We have provided a canonical procedure for the introduction of a preserved symplectic struc-
ture in discrete constrained systems. The analogy with Dirac’s procedure in the continuum is quite
remarkable. It is possible to define a notion of discrete evolution that weakly preserves constraints
and Poisson brackets. The distinction between first and second class constraints is still useful and
when second class constraints are imposed strongly the resulting Dirac brackets are preserved.

A feature of the discretized theories is that they may have a smaller number of first class
constraints, and consequently more degrees of freedom than the continuum counterparts. The extra
degrees of freedom come from the fact that the discrete theories may not necessarily have the
same symmetries as the continuum theories. For instance, in the case of homogeneous cosmolo-
gies studied in Ref. 9 the extra pair of phase space degrees of freedom are associated with the fact
that in the discrete theory different choices of refinements in the discretization in time correspond
to different solutions in the discrete theory that nevertheless approximate the same solution in the
continuum theory.

An open question at present is if it is possible in cases of interest, like general relativity, to
find discretizations in which the symmetries of the continuum are automatically preges/ex]
for instance, the case in discretizations of Yang—Mills theé}.ie.ﬂst the moment the only way in
which this seems possible would be to cast the theory in terms of action-angle variables. There the
dynamics simplifies to the point where a discretization preserving the constraints is available. It is
not known how to write the theory in this way in general, although one can see this mechanism in
action, for instance, in Bianchi modélsr in linearized theorﬂf’

This is only a first step for a complete understanding of the dynamics of discrete gauge
systems. The relation between the number of constraints of first and second class and the number
of degrees of freedom, and the connection between the first class constraints and the gauge
invariance of the discrete dynamical system need to be further studied. Moreover, as discussed in
the body of the paper, if one wishes to consider more pathological systems than the ones consid-
ered here, more elaborate canonical transformations may need to be introduced.

The issue of the continuum limit is well understood in the nonsingular case, where there is an
external step parameter that controls the approximation. However, it needs further study in the
case of singular systems, particularly in the case of totally constrained systems where the step of
the approximation is encoded in the additional degrees of freedom of the discrete theory. This
issue has been studied in several motfélait a complete characterization of the possible behav-
iors is still lacking. A similar comment applies to the role of spatial discretizations when one is
considering lattice field theories.
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Rather general mean field theory of heteropolymer liquids developed earlier re-
duces the problem of the phase diagram construction to the determination of extre-
mals of the free energy functional. These should be subsequently analyzed for their
local and global stability. Tackling of this problem traditionally involves the exami-
nation of the behavior of the solutions of a set of nonlinear algebraic and partial
differential equations at various values of the control parameters. Besides, the ne-
cessity arises here to construct in space of these parameters the lines where a
polymer system loses the thermodynamic stability. To overcome mathematical dif-
ficulties encountered we employed a complex approach that combines analytical
and numerical methods. A two-step procedure constitutes the essence of such an
approach. First, the bifurcation analysis is invoked to find the asymptotics of the
extremals in the vicinity of bifurcation points. Then these asymptotics are used as
an initial approximation for the numerical continuation of specific lines, where the
stability loss occurs, into regions of the parametric space far removed from bifur-
cation values. We realized this approach for the melt of linear binary copolymers of
various chemical structure with macromolecules having a pattern of arrangement of
monomeric units describable by a Markov chain. Bifurcation and phase diagrams
for some of these copolymers have been constructed within a wide range of tem-
peratures and volume fractions of a polymer.Z2005 American Institute of
Physics.[DOI: 10.1063/1.1827323

I. INTRODUCTION

The theoretical physics of polymers in its current state suggests the application of a rather
sophisticated mathematical meth¢gke, for instance, Ref.).1This is because the majority of
differential and integral equations which describe polymer systems are nonlinear admitting there-
fore several physically meaningful solutioh€onsequently, problems of nonlinear analysis of
these equations based on the approaches of the theory of bifurcations, typical for the mathematical
physics, are usually encountered here. One of such nontrivial problems particularly important for
the thermodynamics of polymers is attacked in the present paper. The methods of its solution may
be of interest for the physicist—theorists dealing with the Landau theory of phase transitions and
the statistical physics of disordered systems. The experts in the field of the applied mathematics
may also benefit from getting familiar with the solution of this problem, that may prompt them to
look for new possible applications of the contemporary methods of the nonlinear analysis in the
theoretical physics of polymers.

3Electronic mail: Imanev@chph.ras.ru

0022-2488/2005/46(1)/013301/19/$22.50 46, 013301-1 © 2005 American Institute of Physics
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The calculation of a phase diagram belongs to the most challenging theoretical problems of
the thermodynamics of melts and solutions of polyn?dflaving constructed such a diagram one
might judge about the phase state of a polymer liquid under thermodynamic equilibrium at given
values of external parameters. A crucial feature of polymer systems stipulating their qualitative
distinction from low-molecular ones is the possibility of the existence of mesophases. Each of
them represents such an equilibrium state of the liquid of macromolecules comprising more than
one type of elementary units where the density of these latter periodically changes in space at
scales lying between atomic and macroscopic length scales. Depending on this density profile
dimensionalityd a mesophase spatially periodic structures can vary in symmetry. The most inves-
tigated among them are lamell@=1), hexagonald=2), and body centered cubid=3) struc-
tures. They have been found experimentally and scrutinized theoreficBitig. type of a het-
eropolymer equilibrium structure as well as its period and amplitude are controlled along with
temperature and pressure also by architecture, composition, and structure of macromolecules.
Most theoretical and experimental research addressed monodisperse block copolymers, in which
all molecules being identical consist of two or three sufficiently long blocks of elementary5units.
However, synthetic polymers represent as a rule a mixture of macromolecules markedly distin-
guishing in the content of various units and in the pattern of their arrangement along polymer
chains. Thus the number of types of macromolecules in a real polymer is virtually infinite for any
polymer specimen. That is why the description of its chemical structure suggests the recourse to
some statistic approach. By the most general of them the set of macromolecules constituting a
linear copolymer specimen is presumed to be mapped onto the set of realizations of a stochastic
process?. It implies the transition from a particular monomeric unit of a macromolecule to the next
one at every unit interval of “time.” The role of the regular st8fe(e=1, ... m) is played here
by ath type unit while the transition into absorbing st&gcorresponds to going out of a mac-
romolecule. Such a stochastic process with discrete time and finite number of states is referred to
as a stochastic chain. The best known among them is the Markov chain where the probability to
fall into any state at a certain step is exclusively controlled by the type of the state at the preceding
step’ This absorbing chain is characterized by the matrix of transition probabilities

Qw_{l o]
vy QJf

The elementv,; of matrix Q equals the probability of the transition from regular stdteinto
regular stateS; whereas row vecto® and column vectow, have components,,=0 and v,
respectively. Probability of the absorptian, can be expressed through elements of mafix
from the normalization conditiow,g=1-(v, 1+ +v,y). Hence matrixQ and vector of initial
statesv with components, completely specifies a Markov chain.

Nowadays it is established that the chemical structure of many synthetic copolymers is de-
scribed by a Markov chain. This stipulates practical importance of the investigation of their
thermodynamic behavior. Besides, relationships have been derived that express the matrix of
transitionsQ and vectowv through kinetic parameters of a reaction system where copolymers are
synthesize(ﬁ:8 Because these parameters are reported for a great number of particular copolymer-
ization processeasan opportunity opens up to calculate phase diagrams of real copolymers formed
in the course of these processes. In the last decade a number of theoretical works have been
published devoted to the description of spatially periodic structures formed in melts of binary
Markovian copolymer€=*® The approach employed in these papers is a variation of the Landau
theory of the phase transitions. This is based on the expansion of a system free energy in powers
of the order parameter and on cutting off all terms whose power is more than four. Evidently, such
a procedure is correct only in the vicinity of the critical point where the order parameter is
sufficiently small. Thus the region of applicability of the phase diagrams presentedgéherlier
restricted just to this narrow range of the copolymer melt parameters.

To have phase diagrams constructed within the whole range of external parameters an original
approach was put forward which relies on the description of the nuclei of the incipient Bhase.
This approach enabling one to relax the Landau theory restrictions suggests finding nontrivial
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solutions of a set of either integral or differential equations with the subsequent analysis of their
stability. A major task of this paper is to elucidate the potentialities of the practical implementation
of this approach for the construction of the phase diagram of the Markovian copolymer melt using
mathematical apparatus of the bifurcation theory. Bifurcation analysis was earlier used for the
construction of nonhomogeneous unstable structures occurring in the polymer]ﬁté?ﬁds.

The efficiency of the bifurcation analysis as applied to the theory of polymer liquids has been
demonstrated earlier when describing the dynamics of the phase transitions in a mixture of two
homopolymers®*each consisting of the identical molecules. This system essentially differs from
that addressed in the present paper. Qualitative distinction between these two systems lays in the
fact that the first of them is a two-component one unlike the second system that comprises
virtually infinite number of components. The last circumstance appreciably complicates the ther-
modynamic description of heteropolymer liquids considered in the present work as compared